Overall, the default options are the best. However, sometimes one of these is dramatically better (or worse!). For the examples here, one doesn't notice much difference.
RadicalCodim1 chooses an alternate, often much faster, sometimes much slower, algorithm for computing the radical of ideals. This will often produce a different presentation for the integral closure. Radical chooses yet another such algorithm.
AllCodimensions tells the algorithm to bypass the computation of the S2-ification, but in each iteration of the algorithm, use the radical of the extended Jacobian ideal from the previous step, instead of using only the codimension 1 components of that. This is useful when for some reason the S2-ification is hard to compute, or if the probabilistic algorithm for computing it fails. In general though, this option slows down the computation for many examples.
StartWithOneMinor tells the algorithm to not compute the entire Jacobian ideal, just find one element in it. This is often a bad choice, unless the ideal is large enough that one can't compute the Jacobian ideal. In the future, we plan on using the FastMinors package to compute part of the Jacobian ideal.
SimplifyFractions changes the fractions to hopefully be simpler. Sometimes it succeeds, yet sometimes it makes the fractions worse. This is because of the manner in which fraction fields work. We are hoping that in the future, less drastic change of fractions will happen by default.
Vasconocelos tells the routine to instead of computing Hom(J,J), to instead compute Hom(J^-1, J^-1). This is usually a more time consuming computation, but it does potentially get to the answer in a smaller number of steps.
i1 : S = QQ[x,y,z]
o1 = S
o1 : PolynomialRing
|
i2 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o2 = ideal(x - y z - z - z )
o2 : Ideal of S
|
i3 : R = S/f
o3 = R
o3 : QuotientRing
|
i4 : time R' = integralClosure R
-- used 0.453793 seconds
o4 = R'
o4 : QuotientRing
|
i5 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o5 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i6 : icFractions R
3 2 2 4
x y z + z + z
o6 = {--, -------------, x, y, z}
z x
o6 : List
|
i7 : S = QQ[x,y,z]
o7 = S
o7 : PolynomialRing
|
i8 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o8 = ideal(x - y z - z - z )
o8 : Ideal of S
|
i9 : R = S/f
o9 = R
o9 : QuotientRing
|
i10 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.719849 seconds
o10 = R'
o10 : QuotientRing
|
i11 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o11 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i12 : icFractions R
3 2 2 4
x y z + z + z
o12 = {--, -------------, x, y, z}
z x
o12 : List
|
i13 : S = QQ[x,y,z]
o13 = S
o13 : PolynomialRing
|
i14 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o14 = ideal(x - y z - z - z )
o14 : Ideal of S
|
i15 : R = S/f
o15 = R
o15 : QuotientRing
|
i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.45998 seconds
o16 = R'
o16 : QuotientRing
|
i17 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o17 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i18 : S = QQ[x,y,z]
o18 = S
o18 : PolynomialRing
|
i19 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o19 = ideal(x - y z - z - z )
o19 : Ideal of S
|
i20 : R = S/f
o20 = R
o20 : QuotientRing
|
i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
-- used 0.469172 seconds
o21 = R'
o21 : QuotientRing
|
i22 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o22 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,0 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,0 1,0 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i23 : S = QQ[x,y,z]
o23 = S
o23 : PolynomialRing
|
i24 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o24 = ideal(x - y z - z - z )
o24 : Ideal of S
|
i25 : R = S/f
o25 = R
o25 : QuotientRing
|
i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 0.641268 seconds
o26 = R'
o26 : QuotientRing
|
i27 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o27 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i28 : S = QQ[x,y,z]
o28 = S
o28 : PolynomialRing
|
i29 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o29 = ideal(x - y z - z - z )
o29 : Ideal of S
|
i30 : R = S/f
o30 = R
o30 : QuotientRing
|
i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 0.546926 seconds
o31 = R'
o31 : QuotientRing
|
i32 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o32 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i33 : S = QQ[a,b,c,d]
o33 = S
o33 : PolynomialRing
|
i34 : f = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o34 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o34 : Ideal of S
|
i35 : R = S/f
o35 = R
o35 : QuotientRing
|
i36 : time R' = integralClosure R
-- used 0.0814804 seconds
o36 = R'
o36 : QuotientRing
|
i37 : netList (ideal R')_*
+-----------+
o37 = |b*c - a*d |
+-----------+
| 2 |
|w d - c |
| 0,0 |
+-----------+
|w c - b*d|
| 0,0 |
+-----------+
|w b - a*c|
| 0,0 |
+-----------+
| 2 |
|w a - b |
| 0,0 |
+-----------+
| 2 |
|w - a*d |
| 0,0 |
+-----------+
|
i38 : S = QQ[a,b,c,d]
o38 = S
o38 : PolynomialRing
|
i39 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o39 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o39 : Ideal of S
|
i40 : R = S/I
o40 = R
o40 : QuotientRing
|
i41 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.0489548 seconds
o41 = R'
o41 : QuotientRing
|
i42 : icFractions R
2
c
o42 = {--, a, b, c, d}
d
o42 : List
|
i43 : S = QQ[a,b,c,d]
o43 = S
o43 : PolynomialRing
|
i44 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o44 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o44 : Ideal of S
|
i45 : R = S/I
o45 = R
o45 : QuotientRing
|
i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.0780084 seconds
o46 = R'
o46 : QuotientRing
|
i47 : icFractions R
b*d
o47 = {---, a, b, c, d}
c
o47 : List
|
i48 : S = QQ[a,b,c,d]
o48 = S
o48 : PolynomialRing
|
i49 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o49 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o49 : Ideal of S
|
i50 : R = S/I
o50 = R
o50 : QuotientRing
|
i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 0.0786926 seconds
o51 = R'
o51 : QuotientRing
|
i52 : icFractions R
2
c
o52 = {--, a, b, c, d}
d
o52 : List
|
i53 : S = QQ[a,b,c,d]
o53 = S
o53 : PolynomialRing
|
i54 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o54 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o54 : Ideal of S
|
i55 : R = S/I
o55 = R
o55 : QuotientRing
|
i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 0.0883398 seconds
o56 = R'
o56 : QuotientRing
|
i57 : icFractions R
2
c
o57 = {--, a, b, c, d}
d
o57 : List
|
i58 : S' = QQ[symbol a .. symbol f]
o58 = S'
o58 : PolynomialRing
|
i59 : M' = genericSymmetricMatrix(S',a,3)
o59 = | a b c |
| b d e |
| c e f |
3 3
o59 : Matrix S' <-- S'
|
i60 : I' = minors(2,M')
2 2
o60 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o60 : Ideal of S'
|
i61 : center = ideal(b,c,e,a-d,d-f)
o61 = ideal (b, c, e, a - d, d - f)
o61 : Ideal of S'
|
i62 : S = QQ[a,b,c,d,e]
o62 = S
o62 : PolynomialRing
|
i63 : p = map(S'/I',S,gens center)
S'
o63 = map (------------------------------------------------------------------------------------------------------------------, S, {b, c, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o63 : RingMap ------------------------------------------------------------------------------------------------------------------ <-- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i64 : I = kernel p
2 2 2 2 2 2 2 3 2
o64 = ideal (a d - b d - b e + c e - d e - d*e , b c - c - a*b*d + c*d +
-----------------------------------------------------------------------
2 3 2 3 2
c*d*e, a c - c - a*b*d + c*d - a*b*e + c*d*e, b - b*c - a*c*d +
-----------------------------------------------------------------------
2 2 2 2 3 2
b*d*e, a*b - a*c - b*c*d, a b - b*c - a*c*d - a*c*e, a - a*c -
-----------------------------------------------------------------------
2
b*c*d - b*c*e - a*d*e - a*e )
o64 : Ideal of S
|
i65 : betti res I
0 1 2 3 4
o65 = total: 1 7 10 5 1
0: 1 . . . .
1: . . . . .
2: . 7 10 5 1
o65 : BettiTally
|
i66 : R = S/I
o66 = R
o66 : QuotientRing
|
i67 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.0962478 seconds
o67 = R'
o67 : QuotientRing
|
i68 : icFractions R
2 2
b - c
o68 = {-------, a, b, c, d, e}
d
o68 : List
|
i69 : S' = QQ[a..f]
o69 = S'
o69 : PolynomialRing
|
i70 : M' = genericSymmetricMatrix(S',a,3)
o70 = | a b c |
| b d e |
| c e f |
3 3
o70 : Matrix S' <-- S'
|
i71 : I' = minors(2,M')
2 2
o71 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o71 : Ideal of S'
|
i72 : center = ideal(b,e,a-d,d-f)
o72 = ideal (b, e, a - d, d - f)
o72 : Ideal of S'
|
i73 : S = QQ[a,b,d,e]
o73 = S
o73 : PolynomialRing
|
i74 : p = map(S'/I',S,gens center)
S'
o74 = map (------------------------------------------------------------------------------------------------------------------, S, {b, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o74 : RingMap ------------------------------------------------------------------------------------------------------------------ <-- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i75 : I = kernel p
4 2 2 4 2 2 2 2 2 2
o75 = ideal(a - 2a b + b - b d - a d*e - b d*e - a e )
o75 : Ideal of S
|
i76 : betti res I
0 1
o76 = total: 1 1
0: 1 .
1: . .
2: . .
3: . 1
o76 : BettiTally
|
i77 : R = S/I
o77 = R
o77 : QuotientRing
|
i78 : time R' = integralClosure(R, Strategy => Radical)
-- used 0.317021 seconds
o78 = R'
o78 : QuotientRing
|
i79 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o79 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o79 : List
|
i80 : S = QQ[a,b,d,e]
o80 = S
o80 : PolynomialRing
|
i81 : R = S/sub(I,S)
o81 = R
o81 : QuotientRing
|
i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 0.340475 seconds
o82 = R'
o82 : QuotientRing
|
i83 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o83 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o83 : List
|
i84 : S = QQ[a,b,d,e]
o84 = S
o84 : PolynomialRing
|
i85 : R = S/sub(I,S)
o85 = R
o85 : QuotientRing
|
i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
[jacobian time .000332052 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .143325 sec #fractions 6]
[step 1: time .135085 sec #fractions 6]
-- used 0.291246 seconds
o86 = R'
o86 : QuotientRing
|
i87 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o87 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o87 : List
|
i88 : S = QQ[a,b,d,e]
o88 = S
o88 : PolynomialRing
|
i89 : R = S/sub(I,S)
o89 = R
o89 : QuotientRing
|
i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
[jacobian time .000397135 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .209067 sec #fractions 6]
[step 1: time .19998 sec #fractions 6]
-- used 0.412419 seconds
o90 = R'
o90 : QuotientRing
|
i91 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o91 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o91 : List
|
i92 : S = QQ[a,b,d,e]
o92 = S
o92 : PolynomialRing
|
i93 : R = S/sub(I,S)
o93 = R
o93 : QuotientRing
|
i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
[jacobian time .000526267 sec #minors 1]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time .162912 sec #fractions 6]
[step 1: time .474707 sec #fractions 6]
-- used 0.640751 seconds
o94 = R'
o94 : QuotientRing
|
i95 : icFractions R
2 2 2 2 3 2
2a - 2b - d*e - e a b - b + b*d + b*d*e
o95 = {--------------------, -----------------------, a, b, d, e}
d + e a*d + a*e
o95 : List
|
i96 : ideal R'
2 2 2
o96 = ideal (w d + w e - 2a + 2b + d*e + e , w b - 2w a + 2b*d +
0,0 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
b*e, w a - 2w b - a*e, 2w + w e - 2a + 2d*e + e , w w +
0,0 0,1 0,1 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
w e - 2a*b, w - 4b - e )
0,1 0,0
o96 : Ideal of QQ[w ..w , a..b, d..e]
0,0 0,1
|