root-tmva-6.34.08-1.el10_1$> 6rJ@ J>A?d   D (  ,   0 A BFJ2N`NQRKS<K[K(]8]59]5:i5ByGy H|xIXYZ[\]<^ bdeflt uxvwxyD:,0TZCroot-tmva6.34.081.el10_1Toolkit for multivariate data analysisThe Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment for the parallel processing and evaluation of MVA techniques to discriminate signal from background samples. It presently includes (ranked by complexity): * Rectangular cut optimization * Correlated likelihood estimator (PDE approach) * Multi-dimensional likelihood estimator (PDE - range-search approach) * Fisher (and Mahalanobis) discriminant * H-Matrix (chi-squared) estimator * Artificial Neural Network (two different implementations) * Boosted Decision Trees The TMVA package includes an implementation for each of these discrimination techniques, their training and testing (performance evaluation). In addition all these methods can be tested in parallel, and hence their performance on a particular data set may easily be compared.h{buildvm-a64-19.iad2.fedoraproject.org~Fedora ProjectFedora ProjectBSD-3-ClauseFedora ProjectUnspecifiedhttps://root.cern/linuxaarch64o!m8! :$(n V*y:zF(ZA;W6(z1*=fAq@(2j!o4(*U($-!0W 1/62  G0 0+ C*=Cf#%y! ;.>97T "+6&*&q5z&w ]q^1?-1*  I TWwK"=m"(/^%  #8  A  ) * k m  99f F MqU m$ -ba@A큤A큤AA큤A큤A큤A큤A큤A큤hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&hDhDg&g&g&g&hDg&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDhDhDhDhDhDhDhDg&61eb99449737f11bb25b006b9c29856f3bdae650f4222c8256df3051152e0e304c696d7b474d8acfde913e1637aded929c58259bf8d790015ae3611531c3c9a6f6a26c8bfeb16ff138840b9f1b587d9acdaf91008aaf3bb08c9a81ca4e8ed080b5170a3dd58b78dc5be97cd1b445d224f72ba1a7f2ae4e794d274ddeb808b5c48a32457b302cd6bdb2a647cb0e08332711ecfaad22eafcc74300ab884b386f61590928ff9d508ee4ea6938e0ebb97430f4b58fc852e4656b6a9921fd16a8ab495ac153df0ecfa91f99763dca45f5295bb460e523d93b4e4ab54633b2dfd944b9e9308306d6a2184d71d6a66bd947117aa840ded4ff112633d6d1a6c5a74a2a3d406cc9721020be5527da131c8adaa00758fdbd9bef721c0f3c439612de01705121a112da66f7d2ec267f49f25ba5f3be2b3ab74a4bd68f0ff7195c30df1523d3b8aa33f183e34fa5f2624256d7b9c2ef31cf1f8926e2046fea8818f41f9ec8f14a7544b4e1bfc5ca208f5151dd017eea5ed03913da3ee3e1c18bffdd94005ef8c259396344d9977dfbc09650f6629adc32001707dec849862bb10493b3468cbbbdfcd13988bddb065928528f39dcd99918f2f9865d1fb8722b139fe225f3dd9b0ed4a6650b3f9657106d0a3ca2bafacc5985aa409e12ea274dc7cb55886a9574a0d58b6af6f10b08ccb259af748f0a8a1cf80ac298117b4fe925319d94f52bedd9d2d9c0c2518b241a6bd4e01aca8232153504ab712f1da5f7eb506607afbd9948023a7aa1db5a7dcff6bd5b06667860acaf50ad4e5aedf9d72c72f1eff612f94643205ff3fbe714fc080e17f9ce7b21085ed27ca10f7a3c41e23845c909f469f5e646dfdede5db7c506b99bd7fa6344aa1a2b4979da831d38661aaf501c12122e0284f24ba59423d6b75be28db48b9ffab09025db1184cc2fbb43a57ec777f4a74c4eaeb1d8fae4ca8c98d1cab566a9cdf9bfb804e8a02dbad9bacd528608e8755bb96b816eac7c1a881aa1668f33dec54057da64dd9e29041f0eeba637525c7ad990dfc888549c94cb45bf0830843e637ec3a73148ba405f21fb9322e388a5ce6bdfa78a36ae471b0d3f5fb767997d07f8a50f5d4ad61df2d399889d7dbf754701c65d5c5b8cb74ac8afc6199921ff8b83376cb744ad5068962df37f88d21138eb2deaaf4fb6cd5309419b600388c6123156fdfa3d62989031fc3794792b70c3ea3e6b8bb76feb4a19f0e20ca27ba76a320645b8fcfd97ca434228dc5851a91cd04ee867e9022a1bb18fdc0f4178120c17371c741241d8e5e0df50b69adc7d71987daec20356b6b13d08119693ac916830e5ee06127b6ee6f1fe334da78927b7275227cecdacfdf8110bb16759376d92bfc0fdef82288389c3cbc4e20a7161979651f888cc470a3c2d8dade9114980a3b4be540952622908f87f7161f613c691e5a26f142d38faaf11600a7c0ded826dba61ceccfa8008cd72ebd978448973f476c24dfccb4f85c528927187d106bbbd654798a816c2845c9d8df225432b4582554ef8d14cae05d745807e5ad4ee61d56bb79503bd331ffc77b1804241e13a05c98566ae0cb8bdf85e2a8f9bb56d0abca890c3e5481a08717b7f7bf3256aec74251990f7a1163a4e0a7551cbabc885dee8a58932e3a00e683811bc1488203b265389ea5041b9c7734e8c0d7b70da92d8abe005db62464ab72180a1bdcd7994cf1a3a8506691032bb6f67ef32cd7b6f631d254d05a8e1a3aba4a2569f355f33b6a9fd638e47d760a103604184c7f41177600b0ac8710cd3e372e56fac026c9dd1ae1722c29db34d5c64e00cdca94eb4c86753cdce3b91701636061cf826787057d6a37813eae66754b4690a77559368e1413bcd1f3a27beb597917a8a775fb663a6e2ee9373c99f93042f43085183195ebea1c248b11ef11d4505e33599463760e4f7f5c3b8311885ca0132922803ff13109ae5e38d808029b80f4c79d0d6ba23fd938c78d959d47b008ce5e420f8db4a605743a2fac06aab47a61acef167a006a9d3051bf38fa9bfdd53bc3b4bb4278af237752e25fff93f2896bfd420a7ad40aab484362d8f0ae9ce408b8b53b4a3e7a65261332b39344f765d5f387fcf055b45d85bbfe09274596cfe991b815126bb98173da4ae233fe1fb9ad770e05ec9e72f6f0dfcee249473356a92f632a90369842c46f039ab236b249c545aa2cfa8115cb336f412912c49e33f04c6e8c10379e9ff8c7e96ea7ebe1ce30a60a4c853b86450bc4f8851af81ee09ef8fc7a6aa2ae4c857d310ad0c9fd6879dc6d9bac9ffeaf5538a642b6364357fea3cb26d3df7f50ba960350233766f7245ddc4be4a857d21d112a622d370145c997880fcf1d90b78304de00981cbe10b67732a6cfd9412c1856e7dee5009081055bc14ec109473e5b6d56952f62a2657e269ef4bc951457c8372e0fb5767542a44b6cd3fc3efef9ea01833b9ee18898a726b88fc3b6c127a2adc548cc91b70bd467c4ea9a60bbe584b1cdb57f7d4f18754dbc8b9919d5e76792f9be1c1957c048dbd965e46489b23a6105831d0bd775cb0619a12c2464e9814b8f4d8f98ec7e42593cc160b0188c6a4c0ccbcbfec6a9960bb25bd6e044899f9907f5f1f4037222129e711d1db85ce4407edb4d0ba39bd512d67afae576cf7d26f302610f7d312fc9d26fa7ec67f07a22951c1093bee4e45560146e817f6529037a0c7361e9ad8b46836b436e3c47dd58b9a8eef4513b0c7b54ceb54a93a9d4dcf2f3cdac6d2af185381bf04a9c971a45e1aed4f1b7b50e903e74d5186b2329bb8866273ae246495b447bfae889ad89456ff7603a52de469662fc3c7f1209cfda41d1ab56fc76bc1148be2db433e1887ceb3c918baab35adab0055666e1dc0148be73b08d230a94a3182f7592a1d42cfe17fcc4471a2ea9b42e5bbf411632d6774d967f393cf55e9b63f2a221629be54a3a788d8929911ad82a8346b86fdc3b3025f325c8ad1aec1fc62e9d7c8f7556233a363b502e553987f369e60e2f21d9049884b7246f555efab5b882700fbbb1292b582ccd5edf0d35d07b0ab5ddd3ce23ad552a984cb8b7f98c60baa677433cd8f5893afd7da9f6680d0ad136c530402e9391ef24803625d0f60bc5d8310b3f136b58404db067e1d1d1791b4366bbd33e5518cb8209000fc98bfbe6d6173312fa7a74f8c6ef2e8339e96ef5067e7594a63be0367029380b445ba880ac54037e200e62b77ea2c61c65cc9a57fbf366f36f124b83c2ffd1c0aa2a5d314b1e38b779467884dd608ec3c619ef61aff03348d825279bf8235c452a9ee23266ea9b5a465296a9017eaf1c463ac58dd573fe89c8519ff1c63004824db152045f95b3ea256171711053eebba156951939b7cc3e1bcdf0484a5643ab11e30c82c90b9fdd08d3be9d2a9d68aa0542ccc4c911a0e92b601abc5a6a30e2cacbb72d87d3ef466b2763ca498ea3a6612e3edc594e70e0a8aff845ad54cdfa7823e5ceeb253d4238704a3ba8e684279d9930407bc031c464a418b815c264fb842f4e7a983aa1b4a9f86bb2b0fb647c95bdb7125e519bf31209e2e16222058ddaacfa015674c980e1c5a696a235d839535b217064226ca7fd862c6a8d744361e9370ddaad8d9be78471c491275758c55e9f55722862f592bd9398e1aea173e01dc177895d2c05204b39e069a2cf541804b12f149e3a3fed6e5a81d59c94bba4f08ea6e5d4ba10f988f3b3f8bbd7cac58e94cb9d9046dd1383f24276b5fbd7db2d18826d44db761d1155cd3c7155f2247e1103672775bdb6ccc8ba84ee7ea5c4b4e9b7c484b81f6027ad43c56e4995755b93326f9445f705d69afe11639dc94626cbb2f74a4fe77df203c02a75c45c8e14742e51dc1c05f1361d028df633a04d59136da86635e610a7334507dea72d7b3b3a6e989dd10dac77a9f67a817141ae3487d9b50c5e06056d6063bf0c2e75338d64accea7f3305875c9d52cf040a2f5fa670c13d594cb99b7099b720eb1a181437643947e1fb0aff36a469cf3ae4edd9f150b16dce082f8ae465f5f32f0e9ee264ca98097370855578d0525998608146e33fb121604615450e42bdd4b4633c19f9f9e49749f723458cddbf3137e0ead744713836034dbbaf8ccd5cd815556bfd936bd2cacfed0342c60aca6935786a5e990e48f6692e5e9089d95f8f356045824112178c583dbc6cea9fcf13e67d3bfa248e173e1ff5cf005c523a15419a46679b63cea56fa7705c71a325c9821d8d4e8266b1b98d946490ab08e40ea5dc7d669e4f2d986cd9e58e36ec8d872b34b575e5076cae4dee9ff82b37b1a660d6d1f40da8cbe434c1108f8bd4b759c6ac2fb5464e992e46ab2f03220c614d1ef6527e8b3fca233f342e247b70cf946eb7292afe207cd38ea13e35fc342763167579cc5bf02da746de2ffcd7a183ec5483926eafb489eecae544c86bb9fdfd15949c32bf3f1be359b367d9cd1c327c6ddd5e7c89a3cef0772d82a498cab45136cd6ce02ce1a13276f31f1eb89217cf58ad7088a410e3ef1c50e4aef4d11663cc409cd528e495d821d7b2bd59d6b403fa5c8eea1f09d52cdf92a69a0db9c210ba89ca9a68c1abe8ac77d0d5ad76aa9ef67d0bf5a3237dd06c4f47670a00f7d701f0ce6e81bfac4766023310628398457a626022945f6106ec2f0f6b919ca8c825f6a0fe3587ec3ef0a1dd8461777f9515d2e9f746560a990527ea063764b834475881f936479b439f6dc5fb766f66d1a03238b3ebcf543015793c1e23a8f001cbc10efbf9302bf2587177f59275465dbed184cad0b24e1aefd568a9db8eb2a39f70a1feb906cb5db9dd29d1f547d485ac7021c70f555570c46bc09dc392881f532ab4ffffe85af2cd73a0b8eecfafc04edf2e3408cbade010eb89ff1e6dd0f39faa111b541c20e0b13bf0f72aaa8bc9b0827aa637b8fe461dd24846f086a85312e8952bf9a24e48377a98ef9c9757510b6872b7b56c4426db04042cda128e6ab2b5dcb220b3efcac7b3f70e5d6f0448a9c485a63bdc7948e17f13941c50a6d96dbb0cafc75fcba6607565149416e219db5fba72e64e0c87d49e8d364bc48e1c0334ab11398cf1b8e6dd29eb6037daaabfde6db28cbd92ed84a95a76392a7d7b88cb081e04c107bfa45b45826b87a0e27001c84e61fa866af741c233295bf3f644f5955c8716f81e57ab6e35ed8dff0c3970d8de3d42586305053b9063ed711108a734af36f66a8fa3cbc3f78267f1984f0ec28cd53cebc3f085b340236c0a00cb6155e3764771bd645306aab78979a21ef34fc7ee14bd406dc18444c9e3c7750dc51b572e0929379b63bbfc5015142d161d0192289b4f412ded5fefeb06df3a553f2dadb6d58d67a0ac5af15b9383e27963fb4491ebca845da342e568ea03061b783e7e1696c6f04380fdff23cfbb97ba9b4e79aa1339a505f4b374672e60f11896287b28ba22a6a0eea2aef00a05af230408d92f55c36e2819aa97150d7d60c55b9a9a10b378511a1e5b068a71990d7064074d674c77b4ad2febc835a363f7b9dfb2e2fadaa3da36a37532cb6121653a76473d9a355abeeae3f72bc744ba07d8768e32a991169413ae60aedad61d085eb7edec54998a5db9a8fbbfd332aa6e3599823fcaddfa9c88e6bbb15a59b366868e6bfc01d865c8f6a81031b1a9612cd1b5b8f2dea973a34eb5bce9970aec253be12a5b462e691da5fc366951e7ba1fb00e84b66b21af5b960ddbb2dfcb49ad0c440e9ffe2b7a88ac189d774cf0bc39d033375cfa8e653db59403e323e8aee029898ee86f964d06f35376172e6906d1cacb7880be640ac6ab89564ee142b27acfade9a3005484e746e5f9bbf13ed3c7373fcb3b73022162760859ea1db5be0304e2c848fdd50a9595f262083397b663ba6e798c7fcede17d93ec4ffb758f38d87e724ee125c54bf10f8b6765d05a983b6e46ba7e14716128112b9dda0a2406afeaa24d1a27d3623308e77f8839e0ba893a6fa3740aff3efd045a70822cc692d2e09ccd0570382a13222fe96b00f3e7bf8db784c5f23adfb3788187bbb756d53f1ef3c5aae5688a77abb78517d4c5b0653bb059d3bf990a6478b41a65ea121f0c328fa93a1db94c4b921ca466fe59f3fd3f3b07d9ce2943a0afe3550bf5ff7ee4b7cb20bfd464d6cdd2b1fbe0b99ef0e7fe5848cd6c67b8ad6a8cc0bd10b5ef30732e5f84aa7b21b42fc6e05cb9f382c1ffbd11f66df5c8635e11cc38463a71813be6a4672c0d3a98ac924df649e2f0037904a99f6c3454bac9cf5afbb04508a0f77b122bf3a452db46a6c399c74be4a1a8fcda267540ccfe5bf9da4dc4d203b210bc439d7b440d0f369a86f8f9dda018a24e7d94ccf235d5642e9e53c534c13ef9baf9fd7c61457dc38bfd8b077d4550aa5690f70e81b8c5d6a0d11f7a1d9b517b4d16d12b4597e65738d89fe9072ca778fa301bb5040ddc212f3fdd5d09fb786d521e34f86ce330f1bf30a1a31d3cef3c7cff61ab5d2ffbcf6b7d4c542320cd64fd3b6115ad0b33d5cbea7f564dbf42ec4fb7bdeb89a0b52c68d7a06ce87b444d7dc4b1f908c12705687708fe606f5611de3de5b9b7560ec2e84ba03be6d881b2614f3a4c52b1dc83c180d453743bf6331f0ad27dfbd3209e20a38f87fb6014dfd187baf41584a4a39494655b0d659130bc806c1fd20636914867ee7ab93c620037c4435a2f6425730e1e493f14812fe8799b1445002fa0d617588ea2f26871b46252ccc4847216e30f08b7ecb5708480701de6f3315f6afe49be8af30822cc07a5366fa3d598b4b4b6192d15996f2bf7c38751061ac04dfafdbe337e31cea1b24bbe26d96f1bf24f07624ae80648c38e6896d0aa59cfaa9c2017b5707a18b175995c7f1ba89df1e288495ac854f92e9fa43234d78d0e7335ddfbb315aa959f9e4151fd62ca158cc6e498bce930a9d57e22f78afbfe3e5fdcb6fc2d6e5ee6b5ea9da3a7adba96ba04618e3afc107a19944836cd0d72bdc9855f870060d7bac3a3a2117c5cbc1305b5265a09732ece4dc91308dcd2f14a72dcab06d04f40bd0f335da8a12acf30e7874e354a93bf06e29043a7f6d91a254d8302e5db148e1eea8161dbcc8c7759c474b28ff880f80e0e6493d9e22da8bf2eea727e675e2c3e8d23c60c1d5e0a7aa4d56df33517a90d3bff9302e8c2e69830ebfd53861c7c1d32a289bfd511412bb6fc760f8f96c009832274ad1859f4bfef63dbc98ff3bf8312ad8421c096bc73d12de8879c589539f2a938ec634bd75aff062f6b5330193c54d558b18e04a985c20a05b86fd5e72424976027b5a4c0f45fba011e0c33adaeae2a3046757cbf67f9dfd239910d328ea451ccc0c90eacfbdcd5a8f26f3748808e68a815a1118571aa49cb0ab2aee9202cc40b7982ceeaa030232b8d0154a66baa9ff4f8ddd0e7fc4cb22a2d88686189e420dcfe304ca6b4d0950f9638e5a42a3c2f86b49c8b5f0cd884247d75f5be18c68319b7933ced35bfff2738c48c2c145b961de82a3f7fce117754f39520c891ac1516bce90b9d4b0b5c743bea825c13229deb1ade2e3f51e2b7993be9e64f064fe218cab9989c526ade3773ddba8d3c2c9aa62ee50199b33261cd13d8f5e2e91cdb581467ed364b548763328d9b67e4d6006d40c56c5153cbc080279b690c7df3445e433da95c80beeba52425bb34db01889bb563c8ce0ba70aca37f99225918df2de1f89aa3c6285c7c562f615ba59a3faa999a566f44d7df06ef354714bcf0d400db94e5405d7cc2cf4abb536716f7636bcb50c22c20e864395afec193999938a8d2aab260275f020fb0f57ff93f7d801c0cf5ae4e79139507bf5f22ebf20bd18c4a65f7130a47fc9ca5711c35f57c99e0e70b97644a20848e57162ddcc920f6387f7e32c509babeede7927fc0e7bdba9c206244c8914ced047b199b4feed6a560ea953f2f15ab12912d32681f2a482994432c7775a33ccacf9da6ae84503cb2db790c7249eaec66f840df0c193636ec9c3bf033295b5a437f6ae8d1f19ad103320ff940b2e8166f55cf6c0353503f974e6d75ba6be3558ba394c825204a8cbd1e0a195eb5550f6694f30cf151ace9b04d337cc6f43873cce4291d867fcbfabce0ba7ecb9a242daaf2b54693dd0799c0ac5517346dccb8efd01428eaaaa7ef0eae884dd64883fde3f246abed9de4b1139ca02276858b659e6b61b492be1f1f7957e18aead1ed021988f514ef8d1db3dc507465311b4d68c949f2b885c5575215bc02808c97a911a4bd9fb7eacd98ef964c742d32745830794dda84a2a634ad3036c432bd8fc5cf19ef21bbe25b16e50409b60d1043f5f90687a620324bd604ada1e1a84750527486a066f254566fed8360e16404077a14774711af3c3920ecb9baa71f344641a2644199962a5a4a7092c7ad62a92c01297ac49d6cd0d49be0d713f362557cf0eda2a99f49baa5335f81a5dddc37840021c0e0d928fe5a3b5bae42f2a0b1eeeb04470d74183b09b4e5de5ff4769478ca36a15cb7e891e2bfd2c3144b792d8576a02f8a811bbad8cbcc1485fd245b4804b813a50660ba227fc0c6ed9bc0c8effaa8c83905dfda14a78b64ade492292a9cca6ff4094adb200523f1ccb0ce2b956726fdff7e0b0e3de27557ecfeaa109884e3f7b6fbce2a6000314ad2675a23c63fe3e23918267bc2e658429218e3e60654d0f3f7673acc4aa9851cafa0646da95d1cae152abecd34fd8a1609f6cae90b435fdb3226296f799a79777db31017e4e28d009970341694da76e01649df9403e16ed3031ec73e12bbd90ae9d69172802a18b282ed1f4afdd9a1d04e37d179b6c6200dd1ab5b668f192221390775f26d46a4484b430622db3f8032fd2333c374b64cf39ebc882c8639887705b2cc1ee9c3e2b8dcc84821a2569d9dd648aec666b8ee8063d2796e470f815ffa759bac7fb1b846359a5d65a2e6ba24fad8997eb50f3bdca6b3ece4a2c5d4dcbeb799c80d74e42c4e2205e87531ba9c5214365c9763efb0c5675fdb393f019c0f0e7143b657e24c2e5082052ead1f822605fd3586d2376df56c3cbf909fffcc5157bf6ba19345bf09162762e6af42bf90bb7dae9351170639ed8bb2a7ec5a041e708b42789fbc../../../../usr/lib64/root/libTMVA.so.6.34.08libTMVA.so.6.34libTMVA.so.6.34.08rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootroot-6.34.08-1.el10_1.src.rpmlibTMVA.so.6.34()(64bit)root-tmvaroot-tmva(aarch-64)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    ld-linux-aarch64.so.1()(64bit)ld-linux-aarch64.so.1(GLIBC_2.17)(64bit)libCore.so.6.34()(64bit)libGpad.so.6.34()(64bit)libGraf.so.6.34()(64bit)libHist.so.6.34()(64bit)libImt.so.6.34()(64bit)libMLP.so.6.34()(64bit)libMathCore.so.6.34()(64bit)libMatrix.so.6.34()(64bit)libMinuit.so.6.34()(64bit)libMultiProc.so.6.34()(64bit)libNet.so.6.34()(64bit)libRIO.so.6.34()(64bit)libTMVA.so.6.34()(64bit)libTree.so.6.34()(64bit)libTreePlayer.so.6.34()(64bit)libXMLIO.so.6.34()(64bit)libc.so.6()(64bit)libc.so.6(GLIBC_2.17)(64bit)libc.so.6(GLIBC_2.32)(64bit)libc.so.6(GLIBC_2.34)(64bit)libc.so.6(GLIBC_2.38)(64bit)libc.so.6(GLIBC_ABI_DT_RELR)(64bit)libgcc_s.so.1()(64bit)libgcc_s.so.1(GCC_3.0)(64bit)libgslcblas.so.0()(64bit)libm.so.6()(64bit)libm.so.6(GLIBC_2.17)(64bit)libm.so.6(GLIBC_2.27)(64bit)libm.so.6(GLIBC_2.29)(64bit)libm.so.6(GLIBC_2.38)(64bit)libstdc++.so.6()(64bit)libstdc++.so.6(CXXABI_1.3)(64bit)libstdc++.so.6(CXXABI_1.3.11)(64bit)libstdc++.so.6(CXXABI_1.3.13)(64bit)libstdc++.so.6(CXXABI_1.3.2)(64bit)libstdc++.so.6(CXXABI_1.3.3)(64bit)libstdc++.so.6(CXXABI_1.3.7)(64bit)libstdc++.so.6(CXXABI_1.3.8)(64bit)libstdc++.so.6(CXXABI_1.3.9)(64bit)libstdc++.so.6(GLIBCXX_3.4)(64bit)libstdc++.so.6(GLIBCXX_3.4.11)(64bit)libstdc++.so.6(GLIBCXX_3.4.14)(64bit)libstdc++.so.6(GLIBCXX_3.4.15)(64bit)libstdc++.so.6(GLIBCXX_3.4.17)(64bit)libstdc++.so.6(GLIBCXX_3.4.18)(64bit)libstdc++.so.6(GLIBCXX_3.4.19)(64bit)libstdc++.so.6(GLIBCXX_3.4.20)(64bit)libstdc++.so.6(GLIBCXX_3.4.21)(64bit)libstdc++.so.6(GLIBCXX_3.4.22)(64bit)libstdc++.so.6(GLIBCXX_3.4.26)(64bit)libstdc++.so.6(GLIBCXX_3.4.29)(64bit)libstdc++.so.6(GLIBCXX_3.4.30)(64bit)libstdc++.so.6(GLIBCXX_3.4.32)(64bit)libstdc++.so.6(GLIBCXX_3.4.5)(64bit)libstdc++.so.6(GLIBCXX_3.4.9)(64bit)root-core(aarch-64)root-graf(aarch-64)root-graf-gpad(aarch-64)root-hist(aarch-64)root-io(aarch-64)root-io-xml(aarch-64)root-mathcore(aarch-64)root-matrix(aarch-64)root-minuit(aarch-64)root-mlp(aarch-64)root-multiproc(aarch-64)root-net(aarch-64)root-tree(aarch-64)root-tree-player(aarch-64)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsZstd)6.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_16.34.08-1.el10_13.0.4-14.6.0-14.0-15.4.18-14.19.1.1h@g@gg0@g0@g^@g g@gg@ggkgG g5@fX@ff@f@fU@f@fqvfp%@fffe@fdGf]@fDf.:@f*Ef'ffg@e6@eeeXe@e)e(e4@e|?ek@eaeC@eB=e*d@dϋ@ds@d@d}dX@dBzMattias Ellert - 6.34.08-1Mattias Ellert - 6.34.06-1Mattias Ellert - 6.34.04-2Mattias Ellert - 6.34.04-1Benjamin A. Beasley - 6.34.02-8Orion Poplawski - 6.34.02-7Björn Esser - 6.34.02-6Mattias Ellert - 6.34.02-5Fedora Release Engineering - 6.34.02-4Mattias Ellert - 6.34.02-3Mattias Ellert - 6.34.02-2Mattias Ellert - 6.34.02-1Richard W.M. Jones - 6.32.08-2Mattias Ellert - 6.32.08-1Mattias Ellert - 6.32.06-1Mattias Ellert - 6.32.04-2Mattias Ellert - 6.32.04-1Mattias Ellert - 6.32.02-4Fedora Release Engineering - 6.32.02-3Mattias Ellert - 6.32.02-2Mattias Ellert - 6.32.02-1Mattias Ellert - 6.32.00-5Mattias Ellert - 6.32.00-4Python Maint - 6.32.00-3Mattias Ellert - 6.32.00-2Mattias Ellert - 6.32.00-1Mattias Ellert - 6.30.06-5Benjamin A. Beasley - 6.30.06-4Iñaki Úcar - 6.30.06-3Mattias Ellert - 6.30.06-2Mattias Ellert - 6.30.06-1Mattias Ellert - 6.30.04-2Mattias Ellert - 6.30.04-1Mattias Ellert - 6.30.02-9Mattias Ellert - 6.30.02-8Fedora Release Engineering - 6.30.02-7Jonathan Wakely - 6.30.02-6Mattias Ellert - 6.30.02-5Mattias Ellert - 6.30.02-4Mattias Ellert - 6.30.02-3Mattias Ellert - 6.30.02-2Mattias Ellert - 6.30.02-1Mattias Ellert - 6.30.00-1Mattias Ellert - 6.28.08-3Mattias Ellert - 6.28.08-2Mattias Ellert - 6.28.08-1Mattias Ellert - 6.28.06-1Mattias Ellert - 6.28.04-5Fedora Release Engineering - 6.28.04-4Mattias Ellert - 6.28.04-3Orion Poplawski - 6.28.04-2Mattias Ellert - 6.28.04-1Iñaki Úcar - 6.28.02-3- Update to 6.34.08- Update to 6.34.06 - Drop patches accepted upstream or previously backported- Fix roofit/roostats test failures with gcc 15- Update to 6.34.04 - Drop patches accepted upstream or previously backported- Rebuilt for libarrow 19- Rebuild with gsl 2.8- Add explicit BR: libxcrypt-devel- Apply patches to fix build with gcc 15 - Enable roofit-multiprocess for EPEL 10 (dependencies available) - Rebuild for pythia8 8.3.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_42_Mass_Rebuild- Don't add dependencies on root-roofit-multiprocess and root-roofit-zmq to root-roofit-core for EPEL builds- Adjust stressGraphics.ref - Build for EPEL 10 - Disable the R interface for EPEL 10 (R not yet abailable) - Enable uring support for EPEL 9 (supported in kernel since RHEL 9.3)- Update to 6.34.02 - Build CLAD plugin - Removed package: root-roofit-dataframe-helpers- Rebuild for libarrow 18- Update to 6.32.08- Update to 6.32.06 - Split out ROOT 7 dependent parts of root-browsable to a separate package - Split out ROOT 7 dependent parts of root-browserv7 to a separate package- Re-enable Qt5 Web display for Fedora 41+ (qt5-qtwebengine fixed)- Update to 6.32.04 - Drop patches accepted upstream - Disable Qt5 Web display for Fedora 41+ (broken qt5-qtwebengine package)- Update ROOT's R interface for Rcpp 1.0.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_41_Mass_Rebuild- Add openssl-devel-engine build requirement on Fedora 41+ - Fixes for TUri class (PCRE2 compatibility) - Fix test failure with tbb 2021.13.0- Update to 6.32.02 - Drop patches accepted upstream- Add dependency on liburing-devel to root-io - Exclude failing tutorial-tmva-RBatchGenerator_filters_vectors-py test on aarch64 (Fedora 40+)- Backport fix for failing test with Python 3.13- Rebuilt for Python 3.13- Python 3.13 compatibility- Update to 6.32.00 - Drop EPEL 8 build (now requires Python >= 3.7 and tbb >= 2020) - Dropped patches: 12 - New patches: 6 - The JsMVA python module is now a submodule of the ROOT python module - The notebook package was merged with the JupyROOT package- Rebuilt for libarrow.so.1601 - Improved fontconfig support- Do not test with Pandas on 32-bit architectures- R-maint-sig mass rebuild- Rebuilt for libarrow.so.1600- Update to 6.30.06- Support StandardSymbolsPS.otf- Update to 6.30.04 - Drop patch root-adjust-test-for-failures-on-aarch64-ppc64le-s390x.patch (accepted upstrem) - Exclude failing TClingDataMemberInfo.Offset test on s390x- Rebuilt for libarrow.so.1500- Exclude failing gtest-math-matrix-test-testMatrixTSparse on Fedora 40 (aarch64, ppc64le and s390x)- Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild- Rebuilt for TBB 2021.11- Define PYTHON_EXECUTABLE when calling cmake (Fixes EPEL 8 build)- Adjust tests for zlib-ng- Use "standardsymbolsps" instead of "symbol" when searching for the Symbols font in order to not find Noto Symbols instead- Exclude pyunittests-pyroot-numbadeclare test- Update to 6.30.02- Update to 6.30.00 - Removed subpackages: root-io-gfal and root-roofit-common - Dropped patches: 6 - New patches: 6- Rebuilt for libarrow.so.1400- Enable RooFit::MultiProcess on Fedora 40+- Update to 6.28.08 - New subpackage root-tmva-utils (split off from root-tmva) - Port to pcre2- Update to 6.28.06 - Drop patches root-testRooAbsL-test-compares-two-doubles-and-fails.patch and root-strlcpy.patch (fixed upstream)- Rebuilt for libarrow.so.1300- Rebuilt for https://fedoraproject.org/wiki/Fedora_39_Mass_Rebuild- Fix build on Fedora 39+ where glibc has strlcpy and strlcat - Enable build of root-gui-qt6webdisplay sub-package if Qt6 is available- Rebuilt for Python 3.12- Update to 6.28.04 - Drop patch root-RF-Rewrite-RooProdPdf.TestGetPartIntList-unit-test.patch (previously backported) - Enable Apache Arrow support (64 bit architectures only)- R-maint-sig mass rebuildroot-tmva  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~6.34.08-1.el10_16.34.08-1.el10_16.28.08 TMVABDTEventWrapper.hBinarySearchTree.hBinarySearchTreeNode.hBinaryTree.hCCPruner.hCCTreeWrapper.hClassInfo.hClassification.hClassifierFactory.hConfig.hConfigurable.hConvergenceTest.hCostComplexityPruneTool.hCrossEntropy.hCrossValidation.hCvSplit.hDNNAdadelta.hAdagrad.hAdam.hArchitecturesCpuCpu.hCpuBuffer.hCpuMatrix.hCpuTensor.hReferenceReference.hDataLoader.hTensorDataLoader.hTCudnn.hBatchNormLayer.hCNNContextHandles.hConvLayer.hMaxPoolLayer.hDLMinimizers.hDataLoader.hDeepNet.hDenseLayer.hFunctions.hGeneralLayer.hLayer.hMinimizers.hNet.hOptimizer.hRMSProp.hRNNGRULayer.hLSTMLayer.hRNNLayer.hReshapeLayer.hSGD.hTensorDataLoader.hDataInputHandler.hDataLoader.hDataSet.hDataSetFactory.hDataSetInfo.hDataSetManager.hDecisionTree.hDecisionTreeNode.hEnvelope.hEvent.hExecutor.hExpectedErrorPruneTool.hFactory.hFitterBase.hGeneticAlgorithm.hGeneticFitter.hGeneticGenes.hGeneticPopulation.hGeneticRange.hGiniIndex.hGiniIndexWithLaplace.hHyperParameterOptimisation.hIFitterTarget.hIMethod.hIPruneTool.hInterval.hKDEKernel.hLDA.hLogInterval.hLossFunction.hMCFitter.hMethodANNBase.hMethodBDT.hMethodBase.hMethodBayesClassifier.hMethodBoost.hMethodCFMlpANN.hMethodCFMlpANN_Utils.hMethodCFMlpANN_def.hMethodCategory.hMethodCompositeBase.hMethodCrossValidation.hMethodCuts.hMethodDL.hMethodDNN.hMethodDT.hMethodFDA.hMethodFisher.hMethodHMatrix.hMethodKNN.hMethodLD.hMethodLikelihood.hMethodMLP.hMethodPDEFoam.hMethodPDERS.hMethodRuleFit.hMethodSVM.hMethodTMlpANN.hMinuitFitter.hMinuitWrapper.hMisClassificationError.hModulekNN.hMonitoring.hMsgLogger.hNeuralNet.hNeuralNet.iccNode.hNodekNN.hOptimizeConfigParameters.hOption.hOptionMap.hPDEFoam.hPDEFoamCell.hPDEFoamDecisionTree.hPDEFoamDecisionTreeDensity.hPDEFoamDensityBase.hPDEFoamDiscriminant.hPDEFoamDiscriminantDensity.hPDEFoamEvent.hPDEFoamEventDensity.hPDEFoamKernelBase.hPDEFoamKernelGauss.hPDEFoamKernelLinN.hPDEFoamKernelTrivial.hPDEFoamMultiTarget.hPDEFoamTarget.hPDEFoamTargetDensity.hPDEFoamVect.hPDF.hPattern.hQuickMVAProbEstimator.hROCCalc.hROCCurve.hRTensor.hxxRanking.hReader.hRegressionVariance.hResults.hResultsClassification.hResultsMulticlass.hResultsRegression.hRootFinder.hRule.hRuleCut.hRuleEnsemble.hRuleFit.hRuleFitAPI.hRuleFitParams.hSVEvent.hSVKernelFunction.hSVKernelMatrix.hSVWorkingSet.hSdivSqrtSplusB.hSeparationBase.hSimulatedAnnealing.hSimulatedAnnealingFitter.hTActivation.hTActivationChooser.hTActivationIdentity.hTActivationRadial.hTActivationReLU.hTActivationSigmoid.hTActivationTanh.hTNeuron.hTNeuronInput.hTNeuronInputAbs.hTNeuronInputChooser.hTNeuronInputSqSum.hTNeuronInputSum.hTSpline1.hTSpline2.hTSynapse.hTimer.hTools.hTrainingHistory.hTransformationHandler.hTypes.hVarTransformHandler.hVariableDecorrTransform.hVariableGaussTransform.hVariableIdentityTransform.hVariableImportance.hVariableInfo.hVariableNormalizeTransform.hVariablePCATransform.hVariableRearrangeTransform.hVariableTransform.hVariableTransformBase.hVersion.hVolume.h.build-ida670d6f4b30e3c5e8d73a10d3289f0de7ca664libTMVA.rootmaplibTMVA.solibTMVA.so.6.34libTMVA.so.6.34.08libTMVA_rdict.pcmroot-tmvaLICENSE/usr/include/root//usr/include/root/TMVA//usr/include/root/TMVA/DNN//usr/include/root/TMVA/DNN/Architectures//usr/include/root/TMVA/DNN/Architectures/Cpu//usr/include/root/TMVA/DNN/Architectures/Reference//usr/include/root/TMVA/DNN/CNN//usr/include/root/TMVA/DNN/RNN//usr/lib//usr/lib/.build-id/09//usr/lib64/root//usr/share/licenses//usr/share/licenses/root-tmva/-O2 -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wno-complain-wrong-lang -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -mbranch-protection=standard -fasynchronous-unwind-tables -fstack-clash-protection drpmzstd19aarch64-redhat-linux-gnudirectoryC++ source, ASCII textELF 64-bit LSB shared object, ARM aarch64, version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=09a670d6f4b30e3c5e8d73a10d3289f0de7ca664, strippedASCII text9RPRRRRRRRRRRRR.R6R'R-R7R+R/R4R"R2R&R3R%R5R#R,R*R8R!R0R$R1R)R(R RRRRRRRR RRR R R RRR RRRRhttps://bugz.fedoraproject.org/rootutf-8d5339caef241d16a549adcad96cb3912a1241faf67105506ea4db6172de6518d3d97395d88c5d13041a1c3fcda692aa5621451daff54dbffe0dabea401641d76?(/hDLT3root-tmva-6.34.06-1.el10_1f-8ГlVpMz0HIOM8> 6 _ ܉3!}Nbh&3م~Xh' jZeR@ByEaERhGgW*nhf R`x6?*5ꦄ;XES7:cLM"u^`K;)c 4 e`j3u:m5K)M%_ 5eT9|"g;9[/m*X~,Es7mj=LLF 6|k”{%%5w CwPJ0 0X["43 Չ&ųaTY|tn=ZdWѠBgidgf+4n5ω^rfA~2ߘBZh91AY&SYY ;߿F9[W*/xN쮷hAl@h 4Pdh4@Ѧ4 4)<=0(  4 4 hP~6 2Uҡ*&M !d  @4 4ɠiɉ4hhCd)RHȌMA0!L`0 a44422a2`!CJAPJEA0ױJt c=y34F)x)4K t(FFphPdq8Bd.`J86.2`XذyD*RIXy{&^R+0e$hDDaL >1"">IiPdMP ZSMIE8HhLt`,aj$"D68Jd8CӐġJ- R Bd dHЅ4 R%R(%( BP")J"P"(@P Ҵ* )B)B "P d@B@HP  P%*4 MJRҔD4R4@R 9%&Q+@D d(RP9 dJ- B@CBH„J@&JP-4QHR *BPP (4*R%T(d@%)(ҫH 4 *4T PR"ٙ4B)JI&TBj!hB d PPRQ@KBHҴ+JR"PYBP4  dR!B9"M ĭ R#A#H PJ(H4 -(RR#JB@ ԐAuXC8(\l(AavYeD 6,l<-a" -(,+ 7|ĴsjG:1n)L^:]l>D$q8$< MX4VvraOKG!np7]g#Am &os1'e&gqY'Zkw$B`M%U<ލ;6Z yGcƏ"VxK=jGLlU#e\q Y:/}<22JZ3h]Vޣ BRBДE"w ؅x719ߒP(ߖƣOY۴ ,Ħ1Ox1UD 'm~$IwN sD7"{/K1zm/QbxxBaNBX80Fy@P46ψYrHr,#LM첺PeJc4W:RD_φ\58 b(}LaS>xi0fV>5In[5|2**.%"(HQ fA4Krq5WЎZ/Q8M(bZx6DV>6^I2^2~ẹK2VvO=4Y.~z*j@6KU\)Җ}lu) F_K`i>wݣ;顣~V/$9+ғ0RH7,*o@$.날}W9`^?뿁a`5Z& x:-[DM{pas%B*$bx  O61CzR 6 u}?󜎔+L |y,4,fr޹xm:%O1Ho"$Qܸ o%CwGL|𗓕eC$X*J}:= \reݑ5*$CRP,"c|`F,~V )`O_6qZ`q&8X(^ъ4aJ=0 <ww9(ZH}խW1%i?-uD;wb Fsqh#B .+:܀̯BE&h,ahI&^yWKޟ+ 4BMe!P E8OhP2&ەy X .j!SRRߟ3tPr}D4X:Kc㻡+J L{| Q+_l".|$W8x|Qy8u"ܖ˫˅qp Bأg!>-X[* kLj6g cе4rw8a6ˎp*¬..g&uˑrjEU̱Q:| 8|LWWl O.jeVy\(jy@<5c*/!1 =3h3 w0Vv|E#0|~wLUkHoZ2G[ kc&6rvΗ Êo`Lb ]o+fi>˵J }I4fi+fT6ߐj=F٪4駕9Eӂ]2S>u S{mi: /ϦwS0KeCC:5Dʅ`c"!rSCEH"ޖ8=!эf%2> dĞi1+7V$ZmBТ~2Fq\82O[1 rp4:`Q FZph0i1bdjK opRӖ̾% qzmvo* -0 ˥T:> p2U$hy6Ԋ9`v=c^@K8n/Nh'LI*IGIdȺIzRl{eҼaa]G^*mz,cL37WD _qӎFk64z,w="-AI!!5oK zF; >$BMF`xޕW$FQU𥨶 TZMlCO8k]CPD&*[.}Z_{(L:No?ʊ6p,Snٱ YMa# NiJZV&AI\j6~ YaCJ ;{@0 ?'~|biyX\@ku/>Sڗ50Ed>FЙ#p6(=@u.)5ߊ_ ur1Xaej'e^Տa)%L`_}x+p36!vQ.a׌#{+l5B 8 ,l'jm&li !DGLΣw)$bzN! `M;Oԁ0hBd!B͞+n f~*Ku`N$0'kun/w,d {Gg6T^z' W1q*]E,4D= K>b#*Ik aP@XI&TL$9v*@FU.*mճO$̹ ! {2z5(  vx" WUJ- YV9:[4.?Jlo P Vqx3~ ?I4h,Cw{ BcV>! R{.H+˫?aI^G>]SM;(\cG,*Zv &ntY,;W-0Sڦ(Nāވy] k;iɝ0#!]rT.7K5M\$f& |.B/SdѢ(ıRW)2q nxyPTѶ3D1j9ȑ0zFUk #t^ kp-6%uG_ƗN]NR6i-3#- \ tp4ޒ۰I~_NW3+|\B=AZNM4DjZ H,U1DOL, 4{bMqPL>~B&DžIcg2T*}hs-&u<JIRk)¹Gڥ6 /``J4TCϨגݹT^{T;4X، dcfъ}$bvXrC `Y3@]^gnRl(>zsnP }x e`SP [MCsnsYpʵ|z?-'j.'Ee~ wC%Q%;\M#[] dq d'v Ak^}$Q :kY/V;b( m(p`j=Ife&μx!Wfn:n32zzu~yƾ_ xDre{H>U? quFBJT!ԎE {bJH`Qgg3'9f5`:€RM \%H0fhLfUXH`rJIVlW+"_~@QI )K9 ҷĞ|mIμ߉̱蒳.Sqz4-&OQ$8 ָ@q5LhvYRkʳG߰mz)w2,hOa1)\; cۼ1}s;3YޖmI7}Sy;mjjzX1FfuzHT>2 fjcTRϤEW ]$[Uךnq!$CJNi*7UuI\Tt@lwkE0" *fGiO͹S&۸lNv}ޗIAmfQoAG()v@ӤT%TQ?1ȿQO |^0;zE@h֛ DGBaLl-v[oݨ _唟G> &82"u L7֨H]/Gy"S&ܷдMuj5OG! :=:uf|ܾZ| BJ+.k;jua5-I 5X 1 JLp҇ T}d]f/+JהRg"ë|ߘ$MGdLK*653!m?aJA("+zƶZ{M`, W(#=䂻[ I3)lBV\zx`]e7My 19IhZr`.2@xeM;BZrJFU~VNILTxVx$#½HW-oGUaiFgҚbt޹@@&BgB΄4 Q-?]x<- YR8J_ts<+ڶ#E CfFⰋxa&^A##9 }:aǦGGuCO5dF!c,3mbțfb<fn_+&ҰsMk3ҽ`PnG(w .$ؠ'oAxu 4JsE+f9lMK̫Mxp~ķ7z~[oߋUO#WO7~qR)L G砰IW҅N\Ѣv!$`pˤ&1?V1P!YN df+7<:B1Q"tY#2v'1Sߒ5rZDL'2S4h7tA`( a}RkU-H4е%kKn<U3f5a MIr+9wKR X* \Y^yEFg؂]^S^U#DRcMܮ8񸁶Q<,7JD fY4p&"mmۊN3 /W!'{iӋ8?QȱV%Z179tη*utNxH!E;hkm)D!)!Cp;0fmQd_t^9mN"Y!* fu ڥa1_V`yI+ry H$2AP:i>@|A-9gI;SeU^=MЭ9mEe2/i1+566G_^5 #=.Pe#\+WzL'1",Yuԛ^2}e`o׀j{= h~6&T l;*PQg4(Uj ~wTV ksUNiGipdHN˭=XF%伪6M-!瀵= A8 *o2znj9j>@#\k , 3U͌:J,iOwݼSA|jSrC:d囟<{Y#Ϸ|÷Lmv.v,k:Th&tz!ʒAC'Ս c q ACNI`/,ɳRQ4хv6PKGN04WbZ+D^bx4N!^, Pn2r@V·^}Q1`/ɒGVkY}qw KDҋOzNrNRYzyxDOL,ך"Qd|N{w8CoK9żGQG !piU"-=^q+@mMx~491+ih!ڥBu͡vIF<këf")=i:Վ4|}VzcUGi.4+5Ŋ"B3匷7a{CSI;PJ^<Ī8?+;{kWb)g6>)87C"!⭧ϰYx: !m$g%! 'HH"AK# =]|䩝KA.*_)<KchlvK  /+x6/V'αϴ ^aܳ=AbVn},cPfU' ьzFyo˷5)7,h=h4Y@@F]\rNȄvݡ9J}~)!|2):wP<0Wv%85=ԢgN{qxn챭^apΒd\^M4Zl3sƏMM2G~6mͅVNImupws0E0"φ^膵/mi F_#2HhIr30)7,cIg>rS0l~\1nL%{Z1{96u(0|ޫ4X2$y\pUGDyD҇*\k:DΜw=<9r:T]n0)\l;ɀѣLʏtSci45Hzm$6 iaU4f)V_%J _K51WɖuAn UFÄ /ƺjàCg>b g4% h7dR0 "0zepE%$-$Zaal[^Il:05_cje(o2zN~[#U$FAܠ]huqtm!OHJ[.lBL?t?h5c*9܏F'IL@)]^8>3z}]tՉ﯒( =Uf_MHn\?'b& WxNĸ\?y:#>E(rf/1+`H I~,HD$yfV$&:"a@=c Ww ln4lWlV E\)rqI~TJ^k%L-I34r##ad&o(l^(fC+Ftp0S`ᮓA렣H}䮋]t_ʣ7rK4,0oXOLZٲ0Bcg{aLW-!`A #HD;*_jKv`zU/ob]aqWus7Dž%InĠ6DXm^Z$NÅ[!+wgzB|t8Vxrٓ]Fz[qT=hI]Nobw-˛ny|+7|Lb< FX('.륔ѝbs'`Wq',{z]^Kos<亀W:RlO1iAĂ\`zR0')|3񷺠XXD9vc7b©a$@D,Id ;{a;$GhK"N<_QL^$&pȪ=_BtAx4/0䫢PZ%b6B+}f<ڌT;reP9rhuoǔ]Lh>m/M][`#p2٪=©mnlu@2 EZiṦ~h\X0_8b,mcF&[O?UdPUNÑ@KS[j_v"64Χ!׺iV`mtSTdM 4t%f m<3bwըin&c$A4.!̓Z0*׽TB92?d`%ReK^=L%^#Ds{v9%V R\|IvIgpEʫj$j׉1!AhT{{qM{+N&Jo%xHK<^dd~ϱtz")9U}y7~WJ_7d\u톤lM (<+|":=guҠtR~&4y6-O*n &Ͼh!J[|ogJ8Q1dM(k'{spka~.ۢ[\Qꘞ(3 -5LmL >n^ !dӵ$iGSXr$FsqR)`󉈉C\i %7t> zWZx`x $t"gCkx -!2ȢC>zmxۿ5vh("2֌̪:^m8Sn2#}BFEp w%HۃG20TL9:x/T:ޠEX~? pn'r'qs;N؆Y9*@Q?Fn|E0~@4U"VjOKcZ\T-3apN3'2[FGfa"=tK0 IVKeލ^/ƽ6ay^\֯@b3څ2VzeZOV,s|+~ ۶Ku- I)( rqos5 8x9vJm&^WMLmb0*+vofj $TG[!}HW($A矅@ pzM7aI|˹0֢^Uj\]ON]jtAE'7!'ߋ=SzNLaۇ/Ƥ7JP R!gݠ>Ԝ){ I%<5"+W.$i8x;/dLHȕ`켦f4fP֜..5>q;'yj%`FZ7巭pWy ,F1F$KNuHYSW?]`yF GEZ#͠Q} {!Q#]u*%'ʈ0Qzv(Z1?F:EuY,u!| ='9y|prS cJ[~+JjgpUzDGPގEa * 2f7gӁKdO|x&oUDPhIlh[R -(Ar]_ߏ9" E꾸3kMcATaAsLr+R@Oen ǝaHt y2iΟu<1s Gcw<a&{m}6`mL5IJgs7CKd T"\2WJw3G^}Ipao)i2Z|,K찟F'{pY,Ha]c"Bp pFGh6=u L&.KBA+SO´jsrosl:Yy&0T5_SAa{WaݩvZq HE).+EIeVeLaƞcplOٰ\=`&/M- iHwd~@CQr4;j-O4yp$PuS3 g:(|7ڿj>#]mRT?S,,hUw.EJ, v{N!:g.=xOS*bnHDN!:/kBYWLho<2ݖH-tg{Op-_Bꧺ{YN-"'Jm/M@~TqMۮLLBHf`_e|b!О3RЯZs0L;tl4H+~dpR񗳤ȷRM4ʱAGiH;}s}*{+NrubO N|sX^(Թv1sky2\_ikXQ(̍)D܍:)O_mZio M%Z-*R+E1B;ݻ5"T8;oѰ:$4溱ӫYs#8$v.Bߜ77㾪}m<U",p2|t1&mBU@nr2uߎ=iBgNݠ5N{&] yCDo(j9 `>'"$|aj~!]*&j^dj+KF nq` @ܬHY*)`Exi'9Q $|#NHsg(P32~D9=QҦ)kV[XOH}r>{ї.I܇ކIt"TLMDA|e? Pd1l'"^ X=5 JAǷr(i?QA A\md!lƗᐥ%7j N6hQ ١\ )Ζ%p[_k`>8+RəD9'"MPq* A=ϘJc7Hwk܌iVYrT`|Xe;6.'l@,3#A*vYs %գw!Rz$&x}`bl87 ;N]z`$@b=Tf%F9}M|` Aag!=B,ػwؑA)  Qˊ0(vA l*?sbJX=n伻B_Ĕe"SU"i~3dq;x<›Pq0!?v U¦GlZ ?XvH3DžCͨ;ai?ո1\V{@1TIXd؉>)9⬂Œ } ֬ǔP)<ȰdêPI/>%bnIO(/VZ\ p#"ʪDH>! hY`csrq]NG+ߥP.O+ [!-!Õ^N$Bdžvc!!o< y_`?h(3/Nc:Aʠ;˚ʞߠ?5#6jaS[kDY2c؃Ex㿰F$=u6ZEײY(\JMFB3At t=S[ۜʋ _xyPa{4& 6sHd(IAZkt@S..Gk"⤣mK"S786X`A.=9"Hvm`"[$ˬǒ0ɯR$XA$$VVdJAe=i w3+^ %Jp]S\V,ۻM9ؾrq*E0{u!l.ӝw׏)8CP{ 'b3aRa8hm Wq$7)\|=IZ\PU~qZ ntO/NҴRp?p:誝BB700 }";T}W|Ńg {Mҵ䎹0cT;#NL4B-{ĭ9 }r7 (0*eۤƦu9 '#;3 㣐s`&=l_T/ قnBb"GoYw79Ϲt*Kit1ja %њ@߽Q|OS5w7-:U=G4"4Ev|OzTH"GL9Plzes} DDBZk@٬Q SMgQ6@Qǣ<()e"<,B $17L0Eyjk[U, jm)׶"B~3jcCP-2`S]YQ @]+ۖacViUBJ9nCT`+X7NE8\_1 Jn2}EV5BYq^H֫9dK@l0xF#2jt#M,i3RcO<8Ap@wO9 dXAvt+*TA3C4o٫Fe`>$w=*ҝ); QrgsU}wDNS>5fۈLdb1LAr`r#BB8"z]p@S/GT!SlN,W.jљl҆SZ\zjw5`Abž"2.qW,H$afԥle) Z*n97S*M>Ϲ6ؼO@ @76G,1=y)hCU$D] LA6T,33Jg.౴W]Dvӝer`L{3CoM"=´Fo-h% c aygR}m֝Sq{JBpݍ] {xJ$q_ʃ0tzT&V>V暎E.6■V!E'v OϔzԸ_u:A;*aqp%SG9̴9}I)IX"!Դ4a[VLCOe8nޢ.'38TTCrz,"=d$h딟%ĥђVisX/٬ 7]pZ<nrX snD;,Zka|΂>C常> o>~+1n' 7~ԓfg5q6=O]Pe]3`LY՞d°XHDɓAkO9 p GXW1Һǐw{a?njByDǶH`s  YW1 JAo!:2A=q$ gi2o>6FW ZGWt_!gޢA};IJm(xG1x O Qv'\vX@Q;ƻCikQl8~UW00&a蕰uRj lm(f2U{5"i|f_h"giX81!LWefYbz=S"yvyK2#w ]Ia #{:bFΉ 3N%'380q(L *S10{]&9o7[b9ڤ(f\jxD44<*dcRvW!>Xs,P5zO?jpOMj/KTH<@&(<=w1cT?9bB%beCPh _0qwBf+ KD1 ܓix=9Ԡ+ڴV'5 cB S`239ߵ6a<]Ki1Aq!#EC-wJڏzVڔ?Es=KJɟ9]wi+xqϦ0:"0, Y2?D}X_%ݙ{㦶p 8d (yæ:_h$+˥Or^%,r(Ҷ.uÔjo:nV\BvB&AsҀɫc0jtN @p p޵yANGXʽG߂Jf1[)0 uS:̟v3 †0,p:ޯJB: