root-tmva-6.34.08-1.el10_0$> c34QX'\>A?d   D (  ,   0 A BFJ2N`NQRKS<K[K(]8]59]5:i5ByGy H|xIXYZ[\]<^ bdeflt uxvwxyD:,0TZCroot-tmva6.34.081.el10_0Toolkit for multivariate data analysisThe Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment for the parallel processing and evaluation of MVA techniques to discriminate signal from background samples. It presently includes (ranked by complexity): * Rectangular cut optimization * Correlated likelihood estimator (PDE approach) * Multi-dimensional likelihood estimator (PDE - range-search approach) * Fisher (and Mahalanobis) discriminant * H-Matrix (chi-squared) estimator * Artificial Neural Network (two different implementations) * Boosted Decision Trees The TMVA package includes an implementation for each of these discrimination techniques, their training and testing (performance evaluation). In addition all these methods can be tested in parallel, and hence their performance on a particular data set may easily be compared.hwbuildhw-a64-05.iad2.fedoraproject.org~Fedora ProjectFedora ProjectBSD-3-ClauseFedora ProjectUnspecifiedhttps://root.cern/linuxaarch64o!m8! :$(n V*y:zF(ZA;W6(z1*=fAq@(2j!o4(*U($-!0W 1/62  G0 0+ C*=Cf#%y! ;.>97T "+6&*&q5z&w ]q^1?-1*  I TWwK"=m"(/^%  #8  A  ) * k m  99f F MqU m$ -baA큤A큤AA큤A큤A큤A큤A큤A큤hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&hDhDg&g&g&g&hDg&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDhDhDhDhDhDhDhDg&61eb99449737f11bb25b006b9c29856f3bdae650f4222c8256df3051152e0e304c696d7b474d8acfde913e1637aded929c58259bf8d790015ae3611531c3c9a6f6a26c8bfeb16ff138840b9f1b587d9acdaf91008aaf3bb08c9a81ca4e8ed080b5170a3dd58b78dc5be97cd1b445d224f72ba1a7f2ae4e794d274ddeb808b5c48a32457b302cd6bdb2a647cb0e08332711ecfaad22eafcc74300ab884b386f61590928ff9d508ee4ea6938e0ebb97430f4b58fc852e4656b6a9921fd16a8ab495ac153df0ecfa91f99763dca45f5295bb460e523d93b4e4ab54633b2dfd944b9e9308306d6a2184d71d6a66bd947117aa840ded4ff112633d6d1a6c5a74a2a3d406cc9721020be5527da131c8adaa00758fdbd9bef721c0f3c439612de01705121a112da66f7d2ec267f49f25ba5f3be2b3ab74a4bd68f0ff7195c30df1523d3b8aa33f183e34fa5f2624256d7b9c2ef31cf1f8926e2046fea8818f41f9ec8f14a7544b4e1bfc5ca208f5151dd017eea5ed03913da3ee3e1c18bffdd94005ef8c259396344d9977dfbc09650f6629adc32001707dec849862bb10493b3468cbbbdfcd13988bddb065928528f39dcd99918f2f9865d1fb8722b139fe225f3dd9b0ed4a6650b3f9657106d0a3ca2bafacc5985aa409e12ea274dc7cb55886a9574a0d58b6af6f10b08ccb259af748f0a8a1cf80ac298117b4fe925319d94f52bedd9d2d9c0c2518b241a6bd4e01aca8232153504ab712f1da5f7eb506607afbd9948023a7aa1db5a7dcff6bd5b06667860acaf50ad4e5aedf9d72c72f1eff612f94643205ff3fbe714fc080e17f9ce7b21085ed27ca10f7a3c41e23845c909f469f5e646dfdede5db7c506b99bd7fa6344aa1a2b4979da831d38661aaf501c12122e0284f24ba59423d6b75be28db48b9ffab09025db1184cc2fbb43a57ec777f4a74c4eaeb1d8fae4ca8c98d1cab566a9cdf9bfb804e8a02dbad9bacd528608e8755bb96b816eac7c1a881aa1668f33dec54057da64dd9e29041f0eeba637525c7ad990dfc888549c94cb45bf0830843e637ec3a73148ba405f21fb9322e388a5ce6bdfa78a36ae471b0d3f5fb767997d07f8a50f5d4ad61df2d399889d7dbf754701c65d5c5b8cb74ac8afc6199921ff8b83376cb744ad5068962df37f88d21138eb2deaaf4fb6cd5309419b600388c6123156fdfa3d62989031fc3794792b70c3ea3e6b8bb76feb4a19f0e20ca27ba76a320645b8fcfd97ca434228dc5851a91cd04ee867e9022a1bb18fdc0f4178120c17371c741241d8e5e0df50b69adc7d71987daec20356b6b13d08119693ac916830e5ee06127b6ee6f1fe334da78927b7275227cecdacfdf8110bb16759376d92bfc0fdef82288389c3cbc4e20a7161979651f888cc470a3c2d8dade9114980a3b4be540952622908f87f7161f613c691e5a26f142d38faaf11600a7c0ded826dba61ceccfa8008cd72ebd978448973f476c24dfccb4f85c528927187d106bbbd654798a816c2845c9d8df225432b4582554ef8d14cae05d745807e5ad4ee61d56bb79503bd331ffc77b1804241e13a05c98566ae0cb8bdf85e2a8f9bb56d0abca890c3e5481a08717b7f7bf3256aec74251990f7a1163a4e0a7551cbabc885dee8a58932e3a00e683811bc1488203b265389ea5041b9c7734e8c0d7b70da92d8abe005db62464ab72180a1bdcd7994cf1a3a8506691032bb6f67ef32cd7b6f631d254d05a8e1a3aba4a2569f355f33b6a9fd638e47d760a103604184c7f41177600b0ac8710cd3e372e56fac026c9dd1ae1722c29db34d5c64e00cdca94eb4c86753cdce3b91701636061cf826787057d6a37813eae66754b4690a77559368e1413bcd1f3a27beb597917a8a775fb663a6e2ee9373c99f93042f43085183195ebea1c248b11ef11d4505e33599463760e4f7f5c3b8311885ca0132922803ff13109ae5e38d808029b80f4c79d0d6ba23fd938c78d959d47b008ce5e420f8db4a605743a2fac06aab47a61acef167a006a9d3051bf38fa9bfdd53bc3b4bb4278af237752e25fff93f2896bfd420a7ad40aab484362d8f0ae9ce408b8b53b4a3e7a65261332b39344f765d5f387fcf055b45d85bbfe09274596cfe991b815126bb98173da4ae233fe1fb9ad770e05ec9e72f6f0dfcee249473356a92f632a90369842c46f039ab236b249c545aa2cfa8115cb336f412912c49e33f04c6e8c10379e9ff8c7e96ea7ebe1ce30a60a4c853b86450bc4f8851af81ee09ef8fc7a6aa2ae4c857d310ad0c9fd6879dc6d9bac9ffeaf5538a642b6364357fea3cb26d3df7f50ba960350233766f7245ddc4be4a857d21d112a622d370145c997880fcf1d90b78304de00981cbe10b67732a6cfd9412c1856e7dee5009081055bc14ec109473e5b6d56952f62a2657e269ef4bc951457c8372e0fb5767542a44b6cd3fc3efef9ea01833b9ee18898a726b88fc3b6c127a2adc548cc91b70bd467c4ea9a60bbe584b1cdb57f7d4f18754dbc8b9919d5e76792f9be1c1957c048dbd965e46489b23a6105831d0bd775cb0619a12c2464e9814b8f4d8f98ec7e42593cc160b0188c6a4c0ccbcbfec6a9960bb25bd6e044899f9907f5f1f4037222129e711d1db85ce4407edb4d0ba39bd512d67afae576cf7d26f302610f7d312fc9d26fa7ec67f07a22951c1093bee4e45560146e817f6529037a0c7361e9ad8b46836b436e3c47dd58b9a8eef4513b0c7b54ceb54a93a9d4dcf2f3cdac6d2af185381bf04a9c971a45e1aed4f1b7b50e903e74d5186b2329bb8866273ae246495b447bfae889ad89456ff7603a52de469662fc3c7f1209cfda41d1ab56fc76bc1148be2db433e1887ceb3c918baab35adab0055666e1dc0148be73b08d230a94a3182f7592a1d42cfe17fcc4471a2ea9b42e5bbf411632d6774d967f393cf55e9b63f2a221629be54a3a788d8929911ad82a8346b86fdc3b3025f325c8ad1aec1fc62e9d7c8f7556233a363b502e553987f369e60e2f21d9049884b7246f555efab5b882700fbbb1292b582ccd5edf0d35d07b0ab5ddd3ce23ad552a984cb8b7f98c60baa677433cd8f5893afd7da9f6680d0ad136c530402e9391ef24803625d0f60bc5d8310b3f136b58404db067e1d1d1791b4366bbd33e5518cb8209000fc98bfbe6d6173312fa7a74f8c6ef2e8339e96ef5067e7594a63be0367029380b445ba880ac54037e200e62b77ea2c61c65cc9a57fbf366f36f124b83c2ffd1c0aa2a5d314b1e38b779467884dd608ec3c619ef61aff03348d825279bf8235c452a9ee23266ea9b5a465296a9017eaf1c463ac58dd573fe89c8519ff1c63004824db152045f95b3ea256171711053eebba156951939b7cc3e1bcdf0484a5643ab11e30c82c90b9fdd08d3be9d2a9d68aa0542ccc4c911a0e92b601abc5a6a30e2cacbb72d87d3ef466b2763ca498ea3a6612e3edc594e70e0a8aff845ad54cdfa7823e5ceeb253d4238704a3ba8e684279d9930407bc031c464a418b815c264fb842f4e7a983aa1b4a9f86bb2b0fb647c95bdb7125e519bf31209e2e16222058ddaacfa015674c980e1c5a696a235d839535b217064226ca7fd862c6a8d744361e9370ddaad8d9be78471c491275758c55e9f55722862f592bd9398e1aea173e01dc177895d2c05204b39e069a2cf541804b12f149e3a3fed6e5a81d59c94bba4f08ea6e5d4ba10f988f3b3f8bbd7cac58e94cb9d9046dd1383f24276b5fbd7db2d18826d44db761d1155cd3c7155f2247e1103672775bdb6ccc8ba84ee7ea5c4b4e9b7c484b81f6027ad43c56e4995755b93326f9445f705d69afe11639dc94626cbb2f74a4fe77df203c02a75c45c8e14742e51dc1c05f1361d028df633a04d59136da86635e610a7334507dea72d7b3b3a6e989dd10dac77a9f67a817141ae3487d9b50c5e06056d6063bf0c2e75338d64accea7f3305875c9d52cf040a2f5fa670c13d594cb99b7099b720eb1a181437643947e1fb0aff36a469cf3ae4edd9f150b16dce082f8ae465f5f32f0e9ee264ca98097370855578d0525998608146e33fb121604615450e42bdd4b4633c19f9f9e49749f723458cddbf3137e0ead744713836034dbbaf8ccd5cd815556bfd936bd2cacfed0342c60aca6935786a5e990e48f6692e5e9089d95f8f356045824112178c583dbc6cea9fcf13e67d3bfa248e173e1ff5cf005c523a15419a46679b63cea56fa7705c71a325c9821d8d4e8266b1b98d946490ab08e40ea5dc7d669e4f2d986cd9e58e36ec8d872b34b575e5076cae4dee9ff82b37b1a660d6d1f40da8cbe434c1108f8bd4b759c6ac2fb5464e992e46ab2f03220c614d1ef6527e8b3fca233f342e247b70cf946eb7292afe207cd38ea13e35fc342763167579cc5bf02da746de2ffcd7a183ec5483926eafb489eecae544c86bb9fdfd15949c32bf3f1be359b367d9cd1c327c6ddd5e7c89a3cef0772d82a498cab45136cd6ce02ce1a13276f31f1eb89217cf58ad7088a410e3ef1c50e4aef4d11663cc409cd528e495d821d7b2bd59d6b403fa5c8eea1f09d52cdf92a69a0db9c210ba89ca9a68c1abe8ac77d0d5ad76aa9ef67d0bf5a3237dd06c4f47670a00f7d701f0ce6e81bfac4766023310628398457a626022945f6106ec2f0f6b919ca8c825f6a0fe3587ec3ef0a1dd8461777f9515d2e9f746560a990527ea063764b834475881f936479b439f6dc5fb766f66d1a03238b3ebcf543015793c1e23a8f001cbc10efbf9302bf2587177f59275465dbed184cad0b24e1aefd568a9db8eb2a39f70a1feb906cb5db9dd29d1f547d485ac7021c70f555570c46bc09dc392881f532ab4ffffe85af2cd73a0b8eecfafc04edf2e3408cbade010eb89ff1e6dd0f39faa111b541c20e0b13bf0f72aaa8bc9b0827aa637b8fe461dd24846f086a85312e8952bf9a24e48377a98ef9c9757510b6872b7b56c4426db04042cda128e6ab2b5dcb220b3efcac7b3f70e5d6f0448a9c485a63bdc7948e17f13941c50a6d96dbb0cafc75fcba6607565149416e219db5fba72e64e0c87d49e8d364bc48e1c0334ab11398cf1b8e6dd29eb6037daaabfde6db28cbd92ed84a95a76392a7d7b88cb081e04c107bfa45b45826b87a0e27001c84e61fa866af741c233295bf3f644f5955c8716f81e57ab6e35ed8dff0c3970d8de3d42586305053b9063ed711108a734af36f66a8fa3cbc3f78267f1984f0ec28cd53cebc3f085b340236c0a00cb6155e3764771bd645306aab78979a21ef34fc7ee14bd406dc18444c9e3c7750dc51b572e0929379b63bbfc5015142d161d0192289b4f412ded5fefeb06df3a553f2dadb6d58d67a0ac5af15b9383e27963fb4491ebca845da342e568ea03061b783e7e1696c6f04380fdff23cfbb97ba9b4e79aa1339a505f4b374672e60f11896287b28ba22a6a0eea2aef00a05af230408d92f55c36e2819aa97150d7d60c55b9a9a10b378511a1e5b068a71990d7064074d674c77b4ad2febc835a363f7b9dfb2e2fadaa3da36a37532cb6121653a76473d9a355abeeae3f72bc744ba07d8768e32a991169413ae60aedad61d085eb7edec54998a5db9a8fbbfd332aa6e3599823fcaddfa9c88e6bbb15a59b366868e6bfc01d865c8f6a81031b1a9612cd1b5b8f2dea973a34eb5bce9970aec253be12a5b462e691da5fc366951e7ba1fb00e84b66b21af5b960ddbb2dfcb49ad0c440e9ffe2b7a88ac189d774cf0bc39d033375cfa8e653db59403e323e8aee029898ee86f964d06f35376172e6906d1cacb7880be640ac6ab89564ee142b27acfade9a3005484e746e5f9bbf13ed3c7373fcb3b73022162760859ea1db5be0304e2c848fdd50a9595f262083397b663ba6e798c7fcede17d93ec4ffb758f38d87e724ee125c54bf10f8b6765d05a983b6e46ba7e14716128112b9dda0a2406afeaa24d1a27d3623308e77f8839e0ba893a6fa3740aff3efd045a70822cc692d2e09ccd0570382a13222fe96b00f3e7bf8db784c5f23adfb3788187bbb756d53f1ef3c5aae5688a77abb78517d4c5b0653bb059d3bf990a6478b41a65ea121f0c328fa93a1db94c4b921ca466fe59f3fd3f3b07d9ce2943a0afe3550bf5ff7ee4b7cb20bfd464d6cdd2b1fbe0b99ef0e7fe5848cd6c67b8ad6a8cc0bd10b5ef30732e5f84aa7b21b42fc6e05cb9f382c1ffbd11f66df5c8635e11cc38463a71813be6a4672c0d3a98ac924df649e2f0037904a99f6c3454bac9cf5afbb04508a0f77b122bf3a452db46a6c399c74be4a1a8fcda267540ccfe5bf9da4dc4d203b210bc439d7b440d0f369a86f8f9dda018a24e7d94ccf235d5642e9e53c534c13ef9baf9fd7c61457dc38bfd8b077d4550aa5690f70e81b8c5d6a0d11f7a1d9b517b4d16d12b4597e65738d89fe9072ca778fa301bb5040ddc212f3fdd5d09fb786d521e34f86ce330f1bf30a1a31d3cef3c7cff61ab5d2ffbcf6b7d4c542320cd64fd3b6115ad0b33d5cbea7f564dbf42ec4fb7bdeb89a0b52c68d7a06ce87b444d7dc4b1f908c12705687708fe606f5611de3de5b9b7560ec2e84ba03be6d881b2614f3a4c52b1dc83c180d453743bf6331f0ad27dfbd3209e20a38f87fb6014dfd187baf41584a4a39494655b0d659130bc806c1fd20636914867ee7ab93c620037c4435a2f6425730e1e493f14812fe8799b1445002fa0d617588ea2f26871b46252ccc4847216e30f08b7ecb5708480701de6f3315f6afe49be8af30822cc07a5366fa3d598b4b4b6192d15996f2bf7c38751061ac04dfafdbe337e31cea1b24bbe26d96f1bf24f07624ae80648c38e6896d0aa59cfaa9c2017b5707a18b175995c7f1ba89df1e288495ac854f92e9fa43234d78d0e7335ddfbb315aa959f9e4151fd62ca158cc6e498bce930a9d57e22f78afbfe3e5fdcb6fc2d6e5ee6b5ea9da3a7adba96ba04618e3afc107a19944836cd0d72bdc9855f870060d7bac3a3a2117c5cbc1305b5265a09732ece4dc91308dcd2f14a72dcab06d04f40bd0f335da8a12acf30e7874e354a93bf06e29043a7f6d91a254d8302e5db148e1eea8161dbcc8c7759c474b28ff880f80e0e6493d9e22da8bf2eea727e675e2c3e8d23c60c1d5e0a7aa4d56df33517a90d3bff9302e8c2e69830ebfd53861c7c1d32a289bfd511412bb6fc760f8f96c009832274ad1859f4bfef63dbc98ff3bf8312ad8421c096bc73d12de8879c589539f2a938ec634bd75aff062f6b5330193c54d558b18e04a985c20a05b86fd5e72424976027b5a4c0f45fba011e0c33adaeae2a3046757cbf67f9dfd239910d328ea451ccc0c90eacfbdcd5a8f26f3748808e68a815a1118571aa49cb0ab2aee9202cc40b7982ceeaa030232b8d0154a66baa9ff4f8ddd0e7fc4cb22a2d88686189e420dcfe304ca6b4d0950f9638e5a42a3c2f86b49c8b5f0cd884247d75f5be18c68319b7933ced35bfff2738c48c2c145b961de82a3f7fce117754f39520c891ac1516bce90b9d4b0b5c743bea825c13229deb1ade2e3f51e2b7993be9e64f064fe218cab9989c526ade3773ddba8d3c2c9aa62ee50199b33261cd13d8f5e2e91cdb581467ed364b548763328d9b67e4d6006d40c56c5153cbc080279b690c7df3445e433da95c80beeba52425bb34db01889bb563c8ce0ba70aca37f99225918df2de1f89aa3c6285c7c562f615ba59a3faa999a566f44d7df06ef354714bcf0d400db94e5405d7cc2cf4abb536716f7636bcb50c22c20e864395afec193999938a8d2aab260275f020fb0f57ff93f7d801c0cf5ae4e79139507bf5f22ebf20bd18c4a65f7130a47fc9ca5711c35f57c99e0e70b97644a20848e57162ddcc920f6387f7e32c509babeede7927fc0e7bdba9c206244c8914ced047b199b4feed6a560ea953f2f15ab12912d32681f2a482994432c7775a33ccacf9da6ae84503cb2db790c7249eaec66f840df0c193636ec9c3bf033295b5a437f6ae8d1f19ad103320ff940b2e8166f55cf6c0353503f974e6d75ba6be3558ba394c825204a8cbd1e0a195eb5550f6694f30cf151ace9b04d337cc6f43873cce4291d867fcbfabce0ba7ecb9a242daaf2b54693dd0799c0ac5517346dccb8efd01428eaaaa7ef0eae884dd64883fde3f246abed9de4b1139ca02276858b659e6b61b492be1f1f7957e18aead1ed021988f514ef8d1db3dc507465311b4d68c949f2b885c5575215bc02808c97a911a4bd9fb7eacd98ef964c742d32745830794dda84a2a634ad3036c432bd8fc5cf19ef21bbe25b16e50409b60d1043f5f90687a620324bd604ada1e1a84750527486a066f254566fed8360e16404077a14774711af3c3920ecb9baa71f344641a2644199962a5a4a7092c7ad62a92c01297ac49d6cd0d49be0d713f362557cf0eda2a99f49baa5335f81a5dddc37840021c0e0d928fe5a3b5bae42f2a0b1eeeb04470d74183b09b4e5de5ff4769478ca36a15cb7e891e2bfd2c3144b792d8576a02f8a811bbad8cbcc1485fd245b4804b813a50660ba227fc0c6ed9bc0c8effaa8c83905dfda14a78b64ade492292a9cca6ff4094adb200523f1ccb0ce2b956726fdff7e0b0e3de27557ecfeaa109884e3f7b6fbce2a6000314ad2675a23c63fe3e23918267bc2e658429218e3e60654d0f3f7673acc4aa9851cafa0646da95d1cae152abecd34fd8a1609f6cae90b435fdb3226296f799a79777db31017e4e28d009970341694da76e01649df9403e16ed3031ec73e12bbd90ae9d69172802a18b282ed1f4afdd9a1d04e37d179b6c6200dd1ab5b668f192221390775f26d46a4484b430622db3f8032fd2333c374b64cf39ebc882c8639887705b2cc1ee9c3e2b8dcc84821a2569d9dd648aec666b8ee8063d2796e470f815ffa759bac7fb1b846359a5d65a2e6ba24fad8997eb50f3bdca6b3ece4a2c5d4dcbeb799c80d74e439f8f64334b53deda3b17ecc3ab9e128dba76967115bd2972b54e4cdf1df76c22179a89552149528b8f313517c2af14e20205f469c5ec9726530f77d852f5dffbf09162762e6af42bf90bb7dae9351170639ed8bb2a7ec5a041e708b42789fbc../../../../usr/lib64/root/libTMVA.so.6.34.08libTMVA.so.6.34libTMVA.so.6.34.08rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootroot-6.34.08-1.el10_0.src.rpmlibTMVA.so.6.34()(64bit)root-tmvaroot-tmva(aarch-64)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    ld-linux-aarch64.so.1()(64bit)ld-linux-aarch64.so.1(GLIBC_2.17)(64bit)libCore.so.6.34()(64bit)libGpad.so.6.34()(64bit)libGraf.so.6.34()(64bit)libHist.so.6.34()(64bit)libImt.so.6.34()(64bit)libMLP.so.6.34()(64bit)libMathCore.so.6.34()(64bit)libMatrix.so.6.34()(64bit)libMinuit.so.6.34()(64bit)libMultiProc.so.6.34()(64bit)libNet.so.6.34()(64bit)libRIO.so.6.34()(64bit)libTMVA.so.6.34()(64bit)libTree.so.6.34()(64bit)libTreePlayer.so.6.34()(64bit)libXMLIO.so.6.34()(64bit)libc.so.6()(64bit)libc.so.6(GLIBC_2.17)(64bit)libc.so.6(GLIBC_2.32)(64bit)libc.so.6(GLIBC_2.34)(64bit)libc.so.6(GLIBC_2.38)(64bit)libc.so.6(GLIBC_ABI_DT_RELR)(64bit)libgcc_s.so.1()(64bit)libgcc_s.so.1(GCC_3.0)(64bit)libgslcblas.so.0()(64bit)libm.so.6()(64bit)libm.so.6(GLIBC_2.17)(64bit)libm.so.6(GLIBC_2.27)(64bit)libm.so.6(GLIBC_2.29)(64bit)libm.so.6(GLIBC_2.38)(64bit)libstdc++.so.6()(64bit)libstdc++.so.6(CXXABI_1.3)(64bit)libstdc++.so.6(CXXABI_1.3.11)(64bit)libstdc++.so.6(CXXABI_1.3.13)(64bit)libstdc++.so.6(CXXABI_1.3.2)(64bit)libstdc++.so.6(CXXABI_1.3.3)(64bit)libstdc++.so.6(CXXABI_1.3.7)(64bit)libstdc++.so.6(CXXABI_1.3.8)(64bit)libstdc++.so.6(CXXABI_1.3.9)(64bit)libstdc++.so.6(GLIBCXX_3.4)(64bit)libstdc++.so.6(GLIBCXX_3.4.11)(64bit)libstdc++.so.6(GLIBCXX_3.4.14)(64bit)libstdc++.so.6(GLIBCXX_3.4.15)(64bit)libstdc++.so.6(GLIBCXX_3.4.17)(64bit)libstdc++.so.6(GLIBCXX_3.4.18)(64bit)libstdc++.so.6(GLIBCXX_3.4.19)(64bit)libstdc++.so.6(GLIBCXX_3.4.20)(64bit)libstdc++.so.6(GLIBCXX_3.4.21)(64bit)libstdc++.so.6(GLIBCXX_3.4.22)(64bit)libstdc++.so.6(GLIBCXX_3.4.26)(64bit)libstdc++.so.6(GLIBCXX_3.4.29)(64bit)libstdc++.so.6(GLIBCXX_3.4.30)(64bit)libstdc++.so.6(GLIBCXX_3.4.32)(64bit)libstdc++.so.6(GLIBCXX_3.4.5)(64bit)libstdc++.so.6(GLIBCXX_3.4.9)(64bit)root-core(aarch-64)root-graf(aarch-64)root-graf-gpad(aarch-64)root-hist(aarch-64)root-io(aarch-64)root-io-xml(aarch-64)root-mathcore(aarch-64)root-matrix(aarch-64)root-minuit(aarch-64)root-mlp(aarch-64)root-multiproc(aarch-64)root-net(aarch-64)root-tree(aarch-64)root-tree-player(aarch-64)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsZstd)6.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_03.0.4-14.6.0-14.0-15.4.18-14.19.1.1h@g@gg0@g0@g^@g g@gg@ggkgG g5@fX@ff@f@fU@f@fqvfp%@fffe@fdGf]@fDf.:@f*Ef'ffg@e6@eeeXe@e)e(e4@e|?ek@eaeC@eB=e*d@dϋ@ds@d@d}dX@dBzMattias Ellert - 6.34.08-1Mattias Ellert - 6.34.06-1Mattias Ellert - 6.34.04-2Mattias Ellert - 6.34.04-1Benjamin A. Beasley - 6.34.02-8Orion Poplawski - 6.34.02-7Björn Esser - 6.34.02-6Mattias Ellert - 6.34.02-5Fedora Release Engineering - 6.34.02-4Mattias Ellert - 6.34.02-3Mattias Ellert - 6.34.02-2Mattias Ellert - 6.34.02-1Richard W.M. Jones - 6.32.08-2Mattias Ellert - 6.32.08-1Mattias Ellert - 6.32.06-1Mattias Ellert - 6.32.04-2Mattias Ellert - 6.32.04-1Mattias Ellert - 6.32.02-4Fedora Release Engineering - 6.32.02-3Mattias Ellert - 6.32.02-2Mattias Ellert - 6.32.02-1Mattias Ellert - 6.32.00-5Mattias Ellert - 6.32.00-4Python Maint - 6.32.00-3Mattias Ellert - 6.32.00-2Mattias Ellert - 6.32.00-1Mattias Ellert - 6.30.06-5Benjamin A. Beasley - 6.30.06-4Iñaki Úcar - 6.30.06-3Mattias Ellert - 6.30.06-2Mattias Ellert - 6.30.06-1Mattias Ellert - 6.30.04-2Mattias Ellert - 6.30.04-1Mattias Ellert - 6.30.02-9Mattias Ellert - 6.30.02-8Fedora Release Engineering - 6.30.02-7Jonathan Wakely - 6.30.02-6Mattias Ellert - 6.30.02-5Mattias Ellert - 6.30.02-4Mattias Ellert - 6.30.02-3Mattias Ellert - 6.30.02-2Mattias Ellert - 6.30.02-1Mattias Ellert - 6.30.00-1Mattias Ellert - 6.28.08-3Mattias Ellert - 6.28.08-2Mattias Ellert - 6.28.08-1Mattias Ellert - 6.28.06-1Mattias Ellert - 6.28.04-5Fedora Release Engineering - 6.28.04-4Mattias Ellert - 6.28.04-3Orion Poplawski - 6.28.04-2Mattias Ellert - 6.28.04-1Iñaki Úcar - 6.28.02-3- Update to 6.34.08- Update to 6.34.06 - Drop patches accepted upstream or previously backported- Fix roofit/roostats test failures with gcc 15- Update to 6.34.04 - Drop patches accepted upstream or previously backported- Rebuilt for libarrow 19- Rebuild with gsl 2.8- Add explicit BR: libxcrypt-devel- Apply patches to fix build with gcc 15 - Enable roofit-multiprocess for EPEL 10 (dependencies available) - Rebuild for pythia8 8.3.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_42_Mass_Rebuild- Don't add dependencies on root-roofit-multiprocess and root-roofit-zmq to root-roofit-core for EPEL builds- Adjust stressGraphics.ref - Build for EPEL 10 - Disable the R interface for EPEL 10 (R not yet abailable) - Enable uring support for EPEL 9 (supported in kernel since RHEL 9.3)- Update to 6.34.02 - Build CLAD plugin - Removed package: root-roofit-dataframe-helpers- Rebuild for libarrow 18- Update to 6.32.08- Update to 6.32.06 - Split out ROOT 7 dependent parts of root-browsable to a separate package - Split out ROOT 7 dependent parts of root-browserv7 to a separate package- Re-enable Qt5 Web display for Fedora 41+ (qt5-qtwebengine fixed)- Update to 6.32.04 - Drop patches accepted upstream - Disable Qt5 Web display for Fedora 41+ (broken qt5-qtwebengine package)- Update ROOT's R interface for Rcpp 1.0.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_41_Mass_Rebuild- Add openssl-devel-engine build requirement on Fedora 41+ - Fixes for TUri class (PCRE2 compatibility) - Fix test failure with tbb 2021.13.0- Update to 6.32.02 - Drop patches accepted upstream- Add dependency on liburing-devel to root-io - Exclude failing tutorial-tmva-RBatchGenerator_filters_vectors-py test on aarch64 (Fedora 40+)- Backport fix for failing test with Python 3.13- Rebuilt for Python 3.13- Python 3.13 compatibility- Update to 6.32.00 - Drop EPEL 8 build (now requires Python >= 3.7 and tbb >= 2020) - Dropped patches: 12 - New patches: 6 - The JsMVA python module is now a submodule of the ROOT python module - The notebook package was merged with the JupyROOT package- Rebuilt for libarrow.so.1601 - Improved fontconfig support- Do not test with Pandas on 32-bit architectures- R-maint-sig mass rebuild- Rebuilt for libarrow.so.1600- Update to 6.30.06- Support StandardSymbolsPS.otf- Update to 6.30.04 - Drop patch root-adjust-test-for-failures-on-aarch64-ppc64le-s390x.patch (accepted upstrem) - Exclude failing TClingDataMemberInfo.Offset test on s390x- Rebuilt for libarrow.so.1500- Exclude failing gtest-math-matrix-test-testMatrixTSparse on Fedora 40 (aarch64, ppc64le and s390x)- Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild- Rebuilt for TBB 2021.11- Define PYTHON_EXECUTABLE when calling cmake (Fixes EPEL 8 build)- Adjust tests for zlib-ng- Use "standardsymbolsps" instead of "symbol" when searching for the Symbols font in order to not find Noto Symbols instead- Exclude pyunittests-pyroot-numbadeclare test- Update to 6.30.02- Update to 6.30.00 - Removed subpackages: root-io-gfal and root-roofit-common - Dropped patches: 6 - New patches: 6- Rebuilt for libarrow.so.1400- Enable RooFit::MultiProcess on Fedora 40+- Update to 6.28.08 - New subpackage root-tmva-utils (split off from root-tmva) - Port to pcre2- Update to 6.28.06 - Drop patches root-testRooAbsL-test-compares-two-doubles-and-fails.patch and root-strlcpy.patch (fixed upstream)- Rebuilt for libarrow.so.1300- Rebuilt for https://fedoraproject.org/wiki/Fedora_39_Mass_Rebuild- Fix build on Fedora 39+ where glibc has strlcpy and strlcat - Enable build of root-gui-qt6webdisplay sub-package if Qt6 is available- Rebuilt for Python 3.12- Update to 6.28.04 - Drop patch root-RF-Rewrite-RooProdPdf.TestGetPartIntList-unit-test.patch (previously backported) - Enable Apache Arrow support (64 bit architectures only)- R-maint-sig mass rebuildroot-tmva  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~6.34.08-1.el10_06.34.08-1.el10_06.28.08 TMVABDTEventWrapper.hBinarySearchTree.hBinarySearchTreeNode.hBinaryTree.hCCPruner.hCCTreeWrapper.hClassInfo.hClassification.hClassifierFactory.hConfig.hConfigurable.hConvergenceTest.hCostComplexityPruneTool.hCrossEntropy.hCrossValidation.hCvSplit.hDNNAdadelta.hAdagrad.hAdam.hArchitecturesCpuCpu.hCpuBuffer.hCpuMatrix.hCpuTensor.hReferenceReference.hDataLoader.hTensorDataLoader.hTCudnn.hBatchNormLayer.hCNNContextHandles.hConvLayer.hMaxPoolLayer.hDLMinimizers.hDataLoader.hDeepNet.hDenseLayer.hFunctions.hGeneralLayer.hLayer.hMinimizers.hNet.hOptimizer.hRMSProp.hRNNGRULayer.hLSTMLayer.hRNNLayer.hReshapeLayer.hSGD.hTensorDataLoader.hDataInputHandler.hDataLoader.hDataSet.hDataSetFactory.hDataSetInfo.hDataSetManager.hDecisionTree.hDecisionTreeNode.hEnvelope.hEvent.hExecutor.hExpectedErrorPruneTool.hFactory.hFitterBase.hGeneticAlgorithm.hGeneticFitter.hGeneticGenes.hGeneticPopulation.hGeneticRange.hGiniIndex.hGiniIndexWithLaplace.hHyperParameterOptimisation.hIFitterTarget.hIMethod.hIPruneTool.hInterval.hKDEKernel.hLDA.hLogInterval.hLossFunction.hMCFitter.hMethodANNBase.hMethodBDT.hMethodBase.hMethodBayesClassifier.hMethodBoost.hMethodCFMlpANN.hMethodCFMlpANN_Utils.hMethodCFMlpANN_def.hMethodCategory.hMethodCompositeBase.hMethodCrossValidation.hMethodCuts.hMethodDL.hMethodDNN.hMethodDT.hMethodFDA.hMethodFisher.hMethodHMatrix.hMethodKNN.hMethodLD.hMethodLikelihood.hMethodMLP.hMethodPDEFoam.hMethodPDERS.hMethodRuleFit.hMethodSVM.hMethodTMlpANN.hMinuitFitter.hMinuitWrapper.hMisClassificationError.hModulekNN.hMonitoring.hMsgLogger.hNeuralNet.hNeuralNet.iccNode.hNodekNN.hOptimizeConfigParameters.hOption.hOptionMap.hPDEFoam.hPDEFoamCell.hPDEFoamDecisionTree.hPDEFoamDecisionTreeDensity.hPDEFoamDensityBase.hPDEFoamDiscriminant.hPDEFoamDiscriminantDensity.hPDEFoamEvent.hPDEFoamEventDensity.hPDEFoamKernelBase.hPDEFoamKernelGauss.hPDEFoamKernelLinN.hPDEFoamKernelTrivial.hPDEFoamMultiTarget.hPDEFoamTarget.hPDEFoamTargetDensity.hPDEFoamVect.hPDF.hPattern.hQuickMVAProbEstimator.hROCCalc.hROCCurve.hRTensor.hxxRanking.hReader.hRegressionVariance.hResults.hResultsClassification.hResultsMulticlass.hResultsRegression.hRootFinder.hRule.hRuleCut.hRuleEnsemble.hRuleFit.hRuleFitAPI.hRuleFitParams.hSVEvent.hSVKernelFunction.hSVKernelMatrix.hSVWorkingSet.hSdivSqrtSplusB.hSeparationBase.hSimulatedAnnealing.hSimulatedAnnealingFitter.hTActivation.hTActivationChooser.hTActivationIdentity.hTActivationRadial.hTActivationReLU.hTActivationSigmoid.hTActivationTanh.hTNeuron.hTNeuronInput.hTNeuronInputAbs.hTNeuronInputChooser.hTNeuronInputSqSum.hTNeuronInputSum.hTSpline1.hTSpline2.hTSynapse.hTimer.hTools.hTrainingHistory.hTransformationHandler.hTypes.hVarTransformHandler.hVariableDecorrTransform.hVariableGaussTransform.hVariableIdentityTransform.hVariableImportance.hVariableInfo.hVariableNormalizeTransform.hVariablePCATransform.hVariableRearrangeTransform.hVariableTransform.hVariableTransformBase.hVersion.hVolume.h.build-id8a732a62fd9b7560f5ea948ce2ad726b5b7c3flibTMVA.rootmaplibTMVA.solibTMVA.so.6.34libTMVA.so.6.34.08libTMVA_rdict.pcmroot-tmvaLICENSE/usr/include/root//usr/include/root/TMVA//usr/include/root/TMVA/DNN//usr/include/root/TMVA/DNN/Architectures//usr/include/root/TMVA/DNN/Architectures/Cpu//usr/include/root/TMVA/DNN/Architectures/Reference//usr/include/root/TMVA/DNN/CNN//usr/include/root/TMVA/DNN/RNN//usr/lib//usr/lib/.build-id/14//usr/lib64/root//usr/share/licenses//usr/share/licenses/root-tmva/-O2 -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wno-complain-wrong-lang -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -mbranch-protection=standard -fasynchronous-unwind-tables -fstack-clash-protection drpmzstd19aarch64-redhat-linux-gnudirectoryC++ source, ASCII textELF 64-bit LSB shared object, ARM aarch64, version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=148a732a62fd9b7560f5ea948ce2ad726b5b7c3f, strippedASCII text9RPRRRRRRRRRRRR.R6R'R-R7R+R/R4R"R2R&R3R%R5R#R,R*R8R!R0R$R1R)R(R RRRRRRRR RRR R R RRR RRRRhttps://bugz.fedoraproject.org/rootutf-830cad8b2db9852325c3c7429776080cd467f9cda619017b3cae6684c1149fdb9e52919fcf441f2f8381fb20c1d9e8f86ff5cc8507392bd22ba9129f7a58b0c59?(/htlDLT3root-tmva-6.34.06-1.el10_0 ޝEgP\NJ0q -J8> 6 _ ܉3!}Nbh&3م~XhQ d#MYBOEԙi]׀py% 4}:}Xdpgi2+؄hn-&e"2gNf? žVꅁe}6Ώ.WV@}.^t8Hv}!isNY52U`a!-O-eW\EПum2}k*9y+݌C,*v6(I~Kk>4 "36ǥ#l]]X‚6{$qfn$,۩ZV4_PvFj12k%(աO- vNtH0rYdLL~s}ݑMVIUu6j:uN(,F1[nDI~xYI28 > 36X+[5^HN"?{V h s*؏dcax)Wt[6IVݮ24c935716ce0dd3078371f6a4f108110f128f6671dd8130f4f85bde2ed2f7de4235a6e18c95c33a3cc28969c915fd9dde3b0–PhN,X08Ss\ $2OSCje4 @ 4Ѡ =2$ M6i=M4hѠ=@4h IiSF=#M#ST &!UTL@&@hdѡ FCF4 F&id24h44 F #@ 1 da4&)Jbd2a0 4a LC& 12`L2``F4@P'ԕzDR (BbtMch+6Yrl҉E০i,'A<#y(pEb]&pl\L`a.\*EXy{&s<%+0e!$hDDaP >1""GOA&Pcu-I@M*0p11fS ^!"S!1)U @РH\2!$G%ZF)[S2E))DFJPf(BZV(FvC @(iZPJ EL\J(Fh2S rC $(h( Rh)iJP")FVi)("r2Vi)@( 2 k C! $ UE J FaB%k % JT(rrV ) !((J ii h)EJR2TS h \iUViJjP(PP)Fhl̚ JD $*Ah5P!Bd PPRQ@KBHҴ+JR"PYBP4  dR!B9"M ĭ R#A#H PJ(H4 -(RR#JB@ P I 1LRVddU@>;hQ "Z43U@&Ozy\3U3Rl!\A\Q[Oߔ&' L`?tu;Ic@D xe2XSc/I8I[*sfLTib1>pCV05*gc9:d;ڨ t%{2<+Y'#G_s(8#+Si* )KMm 5#rNւf @cV 2^3Rdžuk}``o=/<{x; BRBДE"hlayO#0N$3#wE}  +Nۺ AKvղm|=r(Aᰉ젌@vKȡ}kP 3 NA!͕Ֆ¥4$ w]3V ˨񹪫ߵX+@QUVNbNo0h[1ˢA إņ|egUc! ;0"0LHO&E,l ihMΉ-5?Y5|˩5X+,(Y'{]^1leZսiAMk-4i˦9i5J v?0 o?x ޔ:5?/=IB zJsxgCGI>{LmЈ**+H ^fiGw@n?]nZ^΀UP3'`5lOR$^XMeyO`gթ0W_< BHir g rL-ҀDWҐ"XI阛"QAeE3k#犗1'@{ x|'٢ͰGƄqȁ p,l-n! ?:f ~b`㴇7m!݆nMuhuu4As9Mc߅޼ο?.GSN PaMN"~!q jDd0U{aW"ІZbjfƤ!|nkhjN6vFsƚ% tt^a6-9p+?ޑv.dʣaDVyS3!\C"/CU<0E&!Y)ٴ/@#_,|ʳL;oR$".}/oky$_ uA=ylqq lvCRA =8]8]=PجD43$k_TpRn2GM0LDck \²wI~e0ba΅{8}#FvŇRn"dmCyrᑝ"y^CN#zaIYi@y񒀉{|KfŵFmpnhns PRe#m0`i9 cW6"ȔqUWjCч9~؞7ќO_ps6jf&CDfE ÿC>%>W[f9L=r2{V$772ͶsVmey\ qL ;P{VVVmҁ'&*v (rH>,tQ(m h#eceYqc;PZqdd-{\~$.ڷi &G)4I0ZlPOAigߌ0eru%q {nMQoj;ly$h48~CE=Xܽ"8nݞi [҂weF0&pXY9؛MYSCwQDF4ˠmHn[[}#c, .rN1da7k PK'_UPo%x͜Uĝ.}m5S.g&/cig:Ddθǻ8b)zG8{g.s9\m'lS뤰Ϗy$d['NJ>F=bI[L`dVͅ'Em24AB

{pBCzNi"&[%pY"dt3҅O>IShW+S\Y 80^w8)#@ ͣHeAL%LK68rr`F`}|`<vȬ=P썷фGL9P5DU<*0RVfv(Nuȵ7o)&L^qaȤQ otsJ:l6Ml]fyJ}.~ɿD,ax vLDYKu$<ǓP-fx`nã%x?4& EYYQݲKQ^kw\Es3ޛqd%:OrIs Z7GD#!P>IeZ+0"gb`[0HJPN5B^xaHlhz kH! ܡ{. H]=ZT%E=010ua?A;TkN^0Ǹ) COH ؚA"APV{nD@#.Km|wIS5ӫȼW tmWdsaʸ䣓ʦf H}>XP֣=XzSdSP-Y_Taw Kq^oD,$H3͵Om9:S5/.hlB1p0V5C wV2zÍ֫kOq+%7Iݤst'|6"K*=9Ej?ޮl;.*R_ `lv؞pecK'l3r;Wg1ٯbZTzyBgyۗ861Y\ >p4z9훞,A9!e,ΙJUVchK\@Vޢ&br:!KQ^ +SZx}ե%B67 $dݯyV6=qȮNǖH7vuS~?| fXm5]ku9/}AH mU]Skb X jks%#MfGwOғĹ7dUj5<DX7|T!x֟>Nr1}>lLWR-k Yd_=S#5"bb=V~,FQP=et–`4ɪVD Psci->S*rw]l"I7" 7qjjK1TbтVZfX=ЃH(80Ӣgr㦼%ihtNw!`EI隲vDMͮ{) x1؍$!4kοRN`|VkcS} XQ@(׵QmY"^7Du&.CGiifCa)ďڞ AnhhfitQ72:DπZ_JJAƀ8ƚ!+uc==҈& *~ kAٞx]w1 .:6Np %鲕dqMa=_A73~Sp 9 @o6έlHُh =Ⱦq8$pB @H XYY,r- DJzPjj6dP}?Wt6uS RCGm `ac*pGW=2["q0k`M V"!j{́ZuQ;PE F]LHVm)Xҡ`V;/+ ϜeHߍ 'ӳn6{\' 2(댺[?:*f9 ZP WӅ9HWb\WB3!b2 Εo$0Z$S`?gRu$Na֗Nn}K䩠rh3=rPbfwӢ) ~꼢rΌr #<ڐ@+HʌH0q Dt;Cu3UbRFQD~/.@@dw$>75SA.sN@xWjy 2~<9t⊿ďabG2]6EdR=ߖ#Š,z Ž[|)@r s,q:WJÆ|gpLJnӐO?/}ItKP97UJ%{A8O1:UT\Z3k4J*kg+Q 5q1JxPZ܍ß>!38`}}) #i6.{i/W Z`(-" 5n(䩏xQތ aiϧVMp20&Y)KF+x`t~gx&Hԁpx D>zB}q6pHS3OGńK0ws hmlA`[A˸9\wGQ!U?cBZx @k-+{fC>im+|4M ᑕFCڼ8ؾ0'kwpFO[k(|c:+B6gW1sb7e|əܙ,ڕl <-x2X(ʌI7`G@luyy"ťa&u1,Xa͛x$Χ% ^ǵ71q9&tJc!0 ̢o~Փ &g_b2syvx.(^Vzi TV tU$EGTb0D_+Zn=Awfcc#0{uK3kq2򂎔QH%P,\j-(RU{W~ﳜ"[ i2 8`\f#ۂk'h TU֪kj#nTS]%aJIF^UYV鱑T竈 os1\XIg&HO/#lr9\~s$|5*C`YU啀 nYK"> o1<=-FH HҊ^-/O GnW!@ȸa܉nl:|;k$ 9/* "TӍE(!K>(&!|1$5oxIR&b ]R&ϳl+242XOM]W)^?\IۉO G)gd1Fa?Zm+ⱌ1v~<26PbK)<"H"aAl|Bɴt#Ai>s{#@߷Uf+#K!Q9L6:@ĊԿ3Y"f{6R?h&8#D8r1Ÿwvm6r9 xl6ͼ'ZD {D䗧)&I4">إp1v+^r*!s"3A.! gOFWUDTp}N-mEԄ$#~rs:$owvqЗb;Ҡ X8*P-ٍ2H,R ◛b~8$> %IkD 4K~b~,O]Bwh҇)0W ͱ_si.dwP]W^m~ m6@bb@K?b-`;g<1 -X_?Up]W ›Pbʵa> 5^h$: y6ˏ[Ja[QܿzFZxas ]+{6D)oO5}'LL rW6cc4jhUJk)ȊjA7\ZAL_D>+80^ݺjo/ 1; 7UăuNqzfA i]_0BDqo ]fq&jCP;9W '>g]Ji3 ksk XܙR\t]Il,gܠ++;8I bQRB=[Ҹx|1ӑ\\ Y۴?X f:U5%HY,}ձO bQ~N?+h]s- 獷uŰhoc^Bf 0|1eV8td/Ks&R]9t - )+I+- A/^`jL1qҀpnE` (Ek{ Ͽ41|৛:Eɾ]MTRQ"R0GGA,,M)N_G&NsQizksɭ0ۋήOmw2SUC<7 1 ʐ`[岫>}Qu>!8u |B+;=P3~1O< ' r%{g{3}]ڏz%gl{z1 v9nRџ.f5tX7hθsgY0OB{Wvr߇ʑ֌838CԦ \ZSaK@$-45@qL:Z1UQR)$rn z@OgRQ6J`o Pptj??ZI/^۪4(mPAHr"h}IvH!k@(s~_O hCk3ASM%2w_Hgf} gT d5]E B&k2giccܷx7O6.\D\BZlNҦSheRjZf@Fҷ|}^bueͧ0StmR@Yo^<2kAaNNG5+R H+;E a$/^nԄ@TT.uY0nI IVIe@hm%qgccӅAώ3Tt%v-H* % "0|C#]`_+́G Ѭi32"nh:Fش)4Bں*hph¶cWI$`u' %ޝ Ji\c*ėI@gњ%kt7b!9ޅ!W FĔ2 F!sG9+ŏ sռ _91(ڵYÊsD7GMwv51AcByG¦ S!S(QFvdGTQ?WL[(pa-$0Ai)_EP4Wh]9LJXix^澘Q 0,=ƞ} nݷ7˫jqrP'Oq`aF\ac)C!&/j_s%mkV638ө&?*p=HZ4*L3(xNSIϻ&Q=706Uo.SbcfW~Vat_hciZ4ȨYl'Y̱ 21kv ̂3DML-+Em7qqA e˄zXi$K_  ]Ϸ@N4"Oef561~% e<-!̢=" Yn#w-jozuz;Cgދjnjb |ȕJ-!4Wi7 |5B?ew\w&!9nXSu0yuɊaXF8 ^.-8N%` d^~cLDKRc'\*nzoq01#04a,xiFr89'a=v To4~d 1:ȟ Gd?B6zlS63晏CSX= ,"ճ0 WMHwD`{⩛LBcYLJm!"δv׌ `Cnwޮa:@bHEț_}uy;%vShY_߀uu*7kf>.-]?It{ V?~FH$OK_0,M&  UG$2&RH6Hfo%šyjR Jq腂' z>*EƎPL Cή!)F7ҍLXGH"*[ʋ:pb%Zd^ѨQʶ51pD1[ O-m=@bo!,?adiئOIɬԁP7bO:i 7F+uGpr,Sn"'*ZwLOsq}f{ض~fQm8ASBbAVn?Y[ iR W3\cC*6B\%|t&'Zި_Yz:U` ;8=?]\Q&Db8. Hl2dZZ˖ Vsc1L!wԞ">Jy)mi]qm3LvҢiuv2拵҉INm :ֺ- W/ ۭ*(.yZU}u_yVX;4ՃhH݀daE1GIJ7 6:/]b^ȐsnEl5M9/X5ek}4:"y̡o.8?ep ԘSUn kLeh.ʑ;3- נSnʃ {?(7:§ dž􉙊p|'\‚E,u奆1"ȟq?]JC^%z: ~geide6o_$ɤ7.n2NSl7Hcwrr L+7m'w>7 Kɉv 3*77S|'si#.y lӶZ[Ot;pvFA% |ebw.nYb_Mt'̉'N QwV2 Xe t/wj,HC 7ϐHC^D+?Z fLf՟<&LV2<܍tnzزhfa!w6{둺)P B)⩎o;tEe@l \{xhC=I#SЛ2$q6%i}׳8$ԇt2V.稵&sPD2b䅋%^ש|C5nu_kRK&6CEz=C?7wl~w"L)_ mEK_ 7b!1f.%rCHS'Z|m`( Z`]Fޣ ".4 U]{9+ )AG-xGPŲ;tBti5 =1E?* f5'~=f?pd'b7JۄN|]#|lC:p_v\k1(~ @wTNU/U:7β|gBH^JHҌأ'u#0W `!dK 6ɜB/iXgj|#^Xɸ1ǻ-ʟHAo$BT擅kAJXe7 Ea矋;+(4hfUjbpB Zߒ@a}[_̭^1ԮDt AitS\#yW T98r0ʚ4,i|Iߋ{f0ސ"+lF1/70\R~V1&3B> SFMwMÖ G`ln~\3 r dV+}u%t{?SKڏ xx $6VᚈyRnA}E+W3MI7C0[44 A]P-ܡ:J$ \3b}ll'8xqN1#%g )u#L顂/)W5K0<'ZNqG@ӭ>uمKrD.4ͯE)#IB9GKpD4 Cr)}Uj 7?{gLkBe{}i-Iv~,/ߕTde,JoBΕ/OeD.\⑽֝eبq7SRN%'́2ow(mrlL .ջEbϑJMո7˚ ,ٞɌ[Ҭ" aZy _8ouBF@hy pqҌF' obf"UOs0a}WŐѶgjLHx ȣtC59C62$dEXBel Vnh +qa62Lh6ҟR#M󰇿NDȻez3Hr!XO/"Xt7[߀.Ã,<1Ɖݨ߻iEU~֯d?-"/x(eN/u@Lm*EsNMU( p'Ë#&)Zkb&6y}&E%FAiӗ^c1H˚z̽B X>(mY<50D3zۤkHRyRRjA yO- Y4SAX܈魚6l /rJ3]THòY:+3]IGxE YocqOmۊP;TA7:մ&Sےw`%]f9wGxe& dbјJWDTD,yJpfʨ`mx<zP;-n7B.Ga7=3 5jMѯ:wO@b/닥%uVDgPZ+xY|oϠOU3]W]Nq@^?ES 2xgrev<@z]w[*;l=~{%_gAW k$4TnjD4؟-n fqDA/o;Q4I^r3] FL2Ae޵ Q&ضoTsFcwŠo,| _^Vt EXZ{!EVIC~WH䙖 NOyTU秝C&v*9} tj29𷬡Hq\^3&/a+Z)T鵁?$` ǞB9bEnaeRO:]=cfֶ&ZChh`G&AQgZxgG{wzk +wX09p>:Tr66iN)zTଡ$U?de4DuFd29\ dX@.1Џ \4WTozz?I |΍p "5MaXr}H!O6qoT1+7lk=ƀ"Ёl{[tKpfH$$ѱ@eLZ](.[[EEgTh:քɾ4)(_1p!9%I3; C<$i!E!C"b^̸taj2CN!6f EGŁ vHs[5ߔHMfG`|'Aǐ-9}֕h$U1j)$tr0V^c{;A38*iX02`fùy,.䨢./'޳R7DPF'HbE$)^qV%' F| _WPZ(T^F -aqG;HK_+c?[23S6,;(pmp_ͽ),r4J}Jst^Y=f/NΤ)ϷzIOE0=ml*3>$^ST)k@˟fl&uLL9o4Hm]EYrqOc+N}i(/4 #%}oJ/u/BJָDR#AePHqxP1"IgdԽ5TXXa)ϨA?jq&%^Yo͇ȡ$_ VϦU9 ^V;0\o#B4!鴈I#W,-t6y61D`"SbEuj[=ÍC,׵ M&]CZkhCu@Y٢^]>:vO[lWȬPZ'QQW FH@-}Y:88o ^Vl0c~|+OVcA/?0'{E9 &-<ީqv V=2''Ö[jY~5wԑ[+kjXoU쎜p{ sy}έ"CL 6ʏ8rf5ɡe; iHloLia2*pV_kUf'!X,TR+ /p9ŋf-=HՋ!ݦgF׌e)wj#X[vT9FZl P3w^>"/XZ;'uR?";)p]5Q1:ܳ\ËE`枦"ekFu F6t?u*um%g&|DSW΅Ph㡭DW%[)᧷=.ET lE =V! }}7[q8~ ,XyQ z` ўʎU ؜řwj&/U~T Wӿ>)RωK$lukGd q,!Jp#Sߊrf`fGW c[pVZ͚pkĠWLC_}RO2 (˗T XxC9N f$$yBZm89&pXĺt{:zcr=Y \ZL %Ң&cm:h} @ڹTG1K{< 9)F| t.(Xv1P!,$8I%6@tH%//z^;ӡu9o%X{e+H&;zcJHJk40Q.3r ǹҜ—3ad|7oGc̮2:*x!yԄ$П{RZ~w:Y1mp=ٯc&`PvRFЇ1JEX>Gn+\p{ISMGR!) Z@a R_IS? דCH mS]#eYnL)O3𦅈*0E'R QA4Fx)CrV U ^e͸_&ГG5R/k?"͕\fS6ȋCI'j`ubK*gW258P6y&AZ0Aj!T\]}f5O"rŹPM?>U9#XnAS.}_rNӕnq?kX%5qt+tV|bE ˎxͮPrzi򭷕s t%Z [͊(&ka:쵬X 6(OF³L7'TlLMgd8֩A͚:N|iп>Ӣx a.Vj^[# 하-i斗(rͤHJ(#oaT%B"USz2}‘xHjq 砲А ΫgYZ.shstrtab.note.gnu.propertybuild-idhash.dynsymversion_relapltrinitexfodata.eh_frame_hdrcc_except_lttbss_arrayamico.attribute_debuglink p $521o5lE; zp.CPl K4YXgpqBP0{@CEv(|3 N;ST!T0G0\XA_^ذ `_HJbaMb` ccPH*89`QxW0710e681a4016800442c023./usr/lib64/TMVA_rdict.pcmdIwedD1UlsHH QR5biRR$"BlH$7\#{ՒAY"pv`/swCR, ѴClge3hvv* 9+ u l-Dh: ]4د&Pз&EakeA6/qU}R?0oI;F ýс ~fE Ħ$@7ͳ8Q"Uk힩63 ܴƧb hp$#%"NuQ],t18h@N}$sD}s}`ׅ#=psOy۠́^pxGo|>Ӗ$u2Ƅ>ۗ9Y&җ=3inko8>-i\rUyS עa[D SӋRRSٹyT1zE`Ү ?I1&- }[i3+ bE-,LӺ&C'O ~ִ(징/?7;BąO??_!ꭱyKFK: B@@`E?1ASi7Ҍr,`^کf^=NMc+V[sU3ډ(yz=yZ3?)v7jUdFZ];yh5q5ϋIىuj.ə` Wuj[yiU5C4"DQ B*RsH#2HFy$I: -sO' U޷FSY=)Ie%urr0 c$ڀrbޤwP 7T\fz\IN[j4Jo48LH%c zf}cn!5e){%IS>E3Xb6P=r@} %ᏃXxo!3@=.#TBO> FiT)7/ bDdsur+ Wti˗(ȍs6Kbt(egc-=7҅5ŀ&KAt;6f6)Eիs1Cy[ۋ $qJ&YJc}L,R6LvNP'`;*lh΄HF"0xulsRriQS,Hܻi`J+?bMR }]SJ`;fJAK