root-tmva-6.34.08-1.el10_0$> Q3)LKh{>A9?)d   D  #,  6   @ A BFJKN~NQR0KS\K[K(\8]59]5:i5ByGy H|hIXYZ[\]4^bde flt0uvwx0y:txCroot-tmva6.34.081.el10_0Toolkit for multivariate data analysisThe Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated environment for the parallel processing and evaluation of MVA techniques to discriminate signal from background samples. It presently includes (ranked by complexity): * Rectangular cut optimization * Correlated likelihood estimator (PDE approach) * Multi-dimensional likelihood estimator (PDE - range-search approach) * Fisher (and Mahalanobis) discriminant * H-Matrix (chi-squared) estimator * Artificial Neural Network (two different implementations) * Boosted Decision Trees The TMVA package includes an implementation for each of these discrimination techniques, their training and testing (performance evaluation). In addition all these methods can be tested in parallel, and hence their performance on a particular data set may easily be compared.hbuildvm-ppc64le-03.iad2.fedoraproject.org%Fedora ProjectFedora ProjectBSD-3-ClauseFedora ProjectUnspecifiedhttps://root.cern/linuxppc64leo!m8! :$(n V*y:zF(ZA;W6(z1*=fAq@(2j!o4(*U($-!0W 1/62  G0 0+ C*=Cf#%y! ;.>97T "+6&*&q5z&w ]q^1?-1*  I TWwK"=m"(/^%  #8  A  ) * k m  99f F MqU m$ -vgHA큤A큤AA큤A큤A큤A큤AA큤A큤hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&hDhDg&g&g&g&hDg&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&hDg&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&g&hDhDhDhDhDhDhDhDhDg&61eb99449737f11bb25b006b9c29856f3bdae650f4222c8256df3051152e0e304c696d7b474d8acfde913e1637aded929c58259bf8d790015ae3611531c3c9a6f6a26c8bfeb16ff138840b9f1b587d9acdaf91008aaf3bb08c9a81ca4e8ed080b5170a3dd58b78dc5be97cd1b445d224f72ba1a7f2ae4e794d274ddeb808b5c48a32457b302cd6bdb2a647cb0e08332711ecfaad22eafcc74300ab884b386f61590928ff9d508ee4ea6938e0ebb97430f4b58fc852e4656b6a9921fd16a8ab495ac153df0ecfa91f99763dca45f5295bb460e523d93b4e4ab54633b2dfd944b9e9308306d6a2184d71d6a66bd947117aa840ded4ff112633d6d1a6c5a74a2a3d406cc9721020be5527da131c8adaa00758fdbd9bef721c0f3c439612de01705121a112da66f7d2ec267f49f25ba5f3be2b3ab74a4bd68f0ff7195c30df1523d3b8aa33f183e34fa5f2624256d7b9c2ef31cf1f8926e2046fea8818f41f9ec8f14a7544b4e1bfc5ca208f5151dd017eea5ed03913da3ee3e1c18bffdd94005ef8c259396344d9977dfbc09650f6629adc32001707dec849862bb10493b3468cbbbdfcd13988bddb065928528f39dcd99918f2f9865d1fb8722b139fe225f3dd9b0ed4a6650b3f9657106d0a3ca2bafacc5985aa409e12ea274dc7cb55886a9574a0d58b6af6f10b08ccb259af748f0a8a1cf80ac298117b4fe925319d94f52bedd9d2d9c0c2518b241a6bd4e01aca8232153504ab712f1da5f7eb506607afbd9948023a7aa1db5a7dcff6bd5b06667860acaf50ad4e5aedf9d72c72f1eff612f94643205ff3fbe714fc080e17f9ce7b21085ed27ca10f7a3c41e23845c909f469f5e646dfdede5db7c506b99bd7fa6344aa1a2b4979da831d38661aaf501c12122e0284f24ba59423d6b75be28db48b9ffab09025db1184cc2fbb43a57ec777f4a74c4eaeb1d8fae4ca8c98d1cab566a9cdf9bfb804e8a02dbad9bacd528608e8755bb96b816eac7c1a881aa1668f33dec54057da64dd9e29041f0eeba637525c7ad990dfc888549c94cb45bf0830843e637ec3a73148ba405f21fb9322e388a5ce6bdfa78a36ae471b0d3f5fb767997d07f8a50f5d4ad61df2d399889d7dbf754701c65d5c5b8cb74ac8afc6199921ff8b83376cb744ad5068962df37f88d21138eb2deaaf4fb6cd5309419b600388c6123156fdfa3d62989031fc3794792b70c3ea3e6b8bb76feb4a19f0e20ca27ba76a320645b8fcfd97ca434228dc5851a91cd04ee867e9022a1bb18fdc0f4178120c17371c741241d8e5e0df50b69adc7d71987daec20356b6b13d08119693ac916830e5ee06127b6ee6f1fe334da78927b7275227cecdacfdf8110bb16759376d92bfc0fdef82288389c3cbc4e20a7161979651f888cc470a3c2d8dade9114980a3b4be540952622908f87f7161f613c691e5a26f142d38faaf11600a7c0ded826dba61ceccfa8008cd72ebd978448973f476c24dfccb4f85c528927187d106bbbd654798a816c2845c9d8df225432b4582554ef8d14cae05d745807e5ad4ee61d56bb79503bd331ffc77b1804241e13a05c98566ae0cb8bdf85e2a8f9bb56d0abca890c3e5481a08717b7f7bf3256aec74251990f7a1163a4e0a7551cbabc885dee8a58932e3a00e683811bc1488203b265389ea5041b9c7734e8c0d7b70da92d8abe005db62464ab72180a1bdcd7994cf1a3a8506691032bb6f67ef32cd7b6f631d254d05a8e1a3aba4a2569f355f33b6a9fd638e47d760a103604184c7f41177600b0ac8710cd3e372e56fac026c9dd1ae1722c29db34d5c64e00cdca94eb4c86753cdce3b91701636061cf826787057d6a37813eae66754b4690a77559368e1413bcd1f3a27beb597917a8a775fb663a6e2ee9373c99f93042f43085183195ebea1c248b11ef11d4505e33599463760e4f7f5c3b8311885ca0132922803ff13109ae5e38d808029b80f4c79d0d6ba23fd938c78d959d47b008ce5e420f8db4a605743a2fac06aab47a61acef167a006a9d3051bf38fa9bfdd53bc3b4bb4278af237752e25fff93f2896bfd420a7ad40aab484362d8f0ae9ce408b8b53b4a3e7a65261332b39344f765d5f387fcf055b45d85bbfe09274596cfe991b815126bb98173da4ae233fe1fb9ad770e05ec9e72f6f0dfcee249473356a92f632a90369842c46f039ab236b249c545aa2cfa8115cb336f412912c49e33f04c6e8c10379e9ff8c7e96ea7ebe1ce30a60a4c853b86450bc4f8851af81ee09ef8fc7a6aa2ae4c857d310ad0c9fd6879dc6d9bac9ffeaf5538a642b6364357fea3cb26d3df7f50ba960350233766f7245ddc4be4a857d21d112a622d370145c997880fcf1d90b78304de00981cbe10b67732a6cfd9412c1856e7dee5009081055bc14ec109473e5b6d56952f62a2657e269ef4bc951457c8372e0fb5767542a44b6cd3fc3efef9ea01833b9ee18898a726b88fc3b6c127a2adc548cc91b70bd467c4ea9a60bbe584b1cdb57f7d4f18754dbc8b9919d5e76792f9be1c1957c048dbd965e46489b23a6105831d0bd775cb0619a12c2464e9814b8f4d8f98ec7e42593cc160b0188c6a4c0ccbcbfec6a9960bb25bd6e044899f9907f5f1f4037222129e711d1db85ce4407edb4d0ba39bd512d67afae576cf7d26f302610f7d312fc9d26fa7ec67f07a22951c1093bee4e45560146e817f6529037a0c7361e9ad8b46836b436e3c47dd58b9a8eef4513b0c7b54ceb54a93a9d4dcf2f3cdac6d2af185381bf04a9c971a45e1aed4f1b7b50e903e74d5186b2329bb8866273ae246495b447bfae889ad89456ff7603a52de469662fc3c7f1209cfda41d1ab56fc76bc1148be2db433e1887ceb3c918baab35adab0055666e1dc0148be73b08d230a94a3182f7592a1d42cfe17fcc4471a2ea9b42e5bbf411632d6774d967f393cf55e9b63f2a221629be54a3a788d8929911ad82a8346b86fdc3b3025f325c8ad1aec1fc62e9d7c8f7556233a363b502e553987f369e60e2f21d9049884b7246f555efab5b882700fbbb1292b582ccd5edf0d35d07b0ab5ddd3ce23ad552a984cb8b7f98c60baa677433cd8f5893afd7da9f6680d0ad136c530402e9391ef24803625d0f60bc5d8310b3f136b58404db067e1d1d1791b4366bbd33e5518cb8209000fc98bfbe6d6173312fa7a74f8c6ef2e8339e96ef5067e7594a63be0367029380b445ba880ac54037e200e62b77ea2c61c65cc9a57fbf366f36f124b83c2ffd1c0aa2a5d314b1e38b779467884dd608ec3c619ef61aff03348d825279bf8235c452a9ee23266ea9b5a465296a9017eaf1c463ac58dd573fe89c8519ff1c63004824db152045f95b3ea256171711053eebba156951939b7cc3e1bcdf0484a5643ab11e30c82c90b9fdd08d3be9d2a9d68aa0542ccc4c911a0e92b601abc5a6a30e2cacbb72d87d3ef466b2763ca498ea3a6612e3edc594e70e0a8aff845ad54cdfa7823e5ceeb253d4238704a3ba8e684279d9930407bc031c464a418b815c264fb842f4e7a983aa1b4a9f86bb2b0fb647c95bdb7125e519bf31209e2e16222058ddaacfa015674c980e1c5a696a235d839535b217064226ca7fd862c6a8d744361e9370ddaad8d9be78471c491275758c55e9f55722862f592bd9398e1aea173e01dc177895d2c05204b39e069a2cf541804b12f149e3a3fed6e5a81d59c94bba4f08ea6e5d4ba10f988f3b3f8bbd7cac58e94cb9d9046dd1383f24276b5fbd7db2d18826d44db761d1155cd3c7155f2247e1103672775bdb6ccc8ba84ee7ea5c4b4e9b7c484b81f6027ad43c56e4995755b93326f9445f705d69afe11639dc94626cbb2f74a4fe77df203c02a75c45c8e14742e51dc1c05f1361d028df633a04d59136da86635e610a7334507dea72d7b3b3a6e989dd10dac77a9f67a817141ae3487d9b50c5e06056d6063bf0c2e75338d64accea7f3305875c9d52cf040a2f5fa670c13d594cb99b7099b720eb1a181437643947e1fb0aff36a469cf3ae4edd9f150b16dce082f8ae465f5f32f0e9ee264ca98097370855578d0525998608146e33fb121604615450e42bdd4b4633c19f9f9e49749f723458cddbf3137e0ead744713836034dbbaf8ccd5cd815556bfd936bd2cacfed0342c60aca6935786a5e990e48f6692e5e9089d95f8f356045824112178c583dbc6cea9fcf13e67d3bfa248e173e1ff5cf005c523a15419a46679b63cea56fa7705c71a325c9821d8d4e8266b1b98d946490ab08e40ea5dc7d669e4f2d986cd9e58e36ec8d872b34b575e5076cae4dee9ff82b37b1a660d6d1f40da8cbe434c1108f8bd4b759c6ac2fb5464e992e46ab2f03220c614d1ef6527e8b3fca233f342e247b70cf946eb7292afe207cd38ea13e35fc342763167579cc5bf02da746de2ffcd7a183ec5483926eafb489eecae544c86bb9fdfd15949c32bf3f1be359b367d9cd1c327c6ddd5e7c89a3cef0772d82a498cab45136cd6ce02ce1a13276f31f1eb89217cf58ad7088a410e3ef1c50e4aef4d11663cc409cd528e495d821d7b2bd59d6b403fa5c8eea1f09d52cdf92a69a0db9c210ba89ca9a68c1abe8ac77d0d5ad76aa9ef67d0bf5a3237dd06c4f47670a00f7d701f0ce6e81bfac4766023310628398457a626022945f6106ec2f0f6b919ca8c825f6a0fe3587ec3ef0a1dd8461777f9515d2e9f746560a990527ea063764b834475881f936479b439f6dc5fb766f66d1a03238b3ebcf543015793c1e23a8f001cbc10efbf9302bf2587177f59275465dbed184cad0b24e1aefd568a9db8eb2a39f70a1feb906cb5db9dd29d1f547d485ac7021c70f555570c46bc09dc392881f532ab4ffffe85af2cd73a0b8eecfafc04edf2e3408cbade010eb89ff1e6dd0f39faa111b541c20e0b13bf0f72aaa8bc9b0827aa637b8fe461dd24846f086a85312e8952bf9a24e48377a98ef9c9757510b6872b7b56c4426db04042cda128e6ab2b5dcb220b3efcac7b3f70e5d6f0448a9c485a63bdc7948e17f13941c50a6d96dbb0cafc75fcba6607565149416e219db5fba72e64e0c87d49e8d364bc48e1c0334ab11398cf1b8e6dd29eb6037daaabfde6db28cbd92ed84a95a76392a7d7b88cb081e04c107bfa45b45826b87a0e27001c84e61fa866af741c233295bf3f644f5955c8716f81e57ab6e35ed8dff0c3970d8de3d42586305053b9063ed711108a734af36f66a8fa3cbc3f78267f1984f0ec28cd53cebc3f085b340236c0a00cb6155e3764771bd645306aab78979a21ef34fc7ee14bd406dc18444c9e3c7750dc51b572e0929379b63bbfc5015142d161d0192289b4f412ded5fefeb06df3a553f2dadb6d58d67a0ac5af15b9383e27963fb4491ebca845da342e568ea03061b783e7e1696c6f04380fdff23cfbb97ba9b4e79aa1339a505f4b374672e60f11896287b28ba22a6a0eea2aef00a05af230408d92f55c36e2819aa97150d7d60c55b9a9a10b378511a1e5b068a71990d7064074d674c77b4ad2febc835a363f7b9dfb2e2fadaa3da36a37532cb6121653a76473d9a355abeeae3f72bc744ba07d8768e32a991169413ae60aedad61d085eb7edec54998a5db9a8fbbfd332aa6e3599823fcaddfa9c88e6bbb15a59b366868e6bfc01d865c8f6a81031b1a9612cd1b5b8f2dea973a34eb5bce9970aec253be12a5b462e691da5fc366951e7ba1fb00e84b66b21af5b960ddbb2dfcb49ad0c440e9ffe2b7a88ac189d774cf0bc39d033375cfa8e653db59403e323e8aee029898ee86f964d06f35376172e6906d1cacb7880be640ac6ab89564ee142b27acfade9a3005484e746e5f9bbf13ed3c7373fcb3b73022162760859ea1db5be0304e2c848fdd50a9595f262083397b663ba6e798c7fcede17d93ec4ffb758f38d87e724ee125c54bf10f8b6765d05a983b6e46ba7e14716128112b9dda0a2406afeaa24d1a27d3623308e77f8839e0ba893a6fa3740aff3efd045a70822cc692d2e09ccd0570382a13222fe96b00f3e7bf8db784c5f23adfb3788187bbb756d53f1ef3c5aae5688a77abb78517d4c5b0653bb059d3bf990a6478b41a65ea121f0c328fa93a1db94c4b921ca466fe59f3fd3f3b07d9ce2943a0afe3550bf5ff7ee4b7cb20bfd464d6cdd2b1fbe0b99ef0e7fe5848cd6c67b8ad6a8cc0bd10b5ef30732e5f84aa7b21b42fc6e05cb9f382c1ffbd11f66df5c8635e11cc38463a71813be6a4672c0d3a98ac924df649e2f0037904a99f6c3454bac9cf5afbb04508a0f77b122bf3a452db46a6c399c74be4a1a8fcda267540ccfe5bf9da4dc4d203b210bc439d7b440d0f369a86f8f9dda018a24e7d94ccf235d5642e9e53c534c13ef9baf9fd7c61457dc38bfd8b077d4550aa5690f70e81b8c5d6a0d11f7a1d9b517b4d16d12b4597e65738d89fe9072ca778fa301bb5040ddc212f3fdd5d09fb786d521e34f86ce330f1bf30a1a31d3cef3c7cff61ab5d2ffbcf6b7d4c542320cd64fd3b6115ad0b33d5cbea7f564dbf42ec4fb7bdeb89a0b52c68d7a06ce87b444d7dc4b1f908c12705687708fe606f5611de3de5b9b7560ec2e84ba03be6d881b2614f3a4c52b1dc83c180d453743bf6331f0ad27dfbd3209e20a38f87fb6014dfd187baf41584a4a39494655b0d659130bc806c1fd20636914867ee7ab93c620037c4435a2f6425730e1e493f14812fe8799b1445002fa0d617588ea2f26871b46252ccc4847216e30f08b7ecb5708480701de6f3315f6afe49be8af30822cc07a5366fa3d598b4b4b6192d15996f2bf7c38751061ac04dfafdbe337e31cea1b24bbe26d96f1bf24f07624ae80648c38e6896d0aa59cfaa9c2017b5707a18b175995c7f1ba89df1e288495ac854f92e9fa43234d78d0e7335ddfbb315aa959f9e4151fd62ca158cc6e498bce930a9d57e22f78afbfe3e5fdcb6fc2d6e5ee6b5ea9da3a7adba96ba04618e3afc107a19944836cd0d72bdc9855f870060d7bac3a3a2117c5cbc1305b5265a09732ece4dc91308dcd2f14a72dcab06d04f40bd0f335da8a12acf30e7874e354a93bf06e29043a7f6d91a254d8302e5db148e1eea8161dbcc8c7759c474b28ff880f80e0e6493d9e22da8bf2eea727e675e2c3e8d23c60c1d5e0a7aa4d56df33517a90d3bff9302e8c2e69830ebfd53861c7c1d32a289bfd511412bb6fc760f8f96c009832274ad1859f4bfef63dbc98ff3bf8312ad8421c096bc73d12de8879c589539f2a938ec634bd75aff062f6b5330193c54d558b18e04a985c20a05b86fd5e72424976027b5a4c0f45fba011e0c33adaeae2a3046757cbf67f9dfd239910d328ea451ccc0c90eacfbdcd5a8f26f3748808e68a815a1118571aa49cb0ab2aee9202cc40b7982ceeaa030232b8d0154a66baa9ff4f8ddd0e7fc4cb22a2d88686189e420dcfe304ca6b4d0950f9638e5a42a3c2f86b49c8b5f0cd884247d75f5be18c68319b7933ced35bfff2738c48c2c145b961de82a3f7fce117754f39520c891ac1516bce90b9d4b0b5c743bea825c13229deb1ade2e3f51e2b7993be9e64f064fe218cab9989c526ade3773ddba8d3c2c9aa62ee50199b33261cd13d8f5e2e91cdb581467ed364b548763328d9b67e4d6006d40c56c5153cbc080279b690c7df3445e433da95c80beeba52425bb34db01889bb563c8ce0ba70aca37f99225918df2de1f89aa3c6285c7c562f615ba59a3faa999a566f44d7df06ef354714bcf0d400db94e5405d7cc2cf4abb536716f7636bcb50c22c20e864395afec193999938a8d2aab260275f020fb0f57ff93f7d801c0cf5ae4e79139507bf5f22ebf20bd18c4a65f7130a47fc9ca5711c35f57c99e0e70b97644a20848e57162ddcc920f6387f7e32c509babeede7927fc0e7bdba9c206244c8914ced047b199b4feed6a560ea953f2f15ab12912d32681f2a482994432c7775a33ccacf9da6ae84503cb2db790c7249eaec66f840df0c193636ec9c3bf033295b5a437f6ae8d1f19ad103320ff940b2e8166f55cf6c0353503f974e6d75ba6be3558ba394c825204a8cbd1e0a195eb5550f6694f30cf151ace9b04d337cc6f43873cce4291d867fcbfabce0ba7ecb9a242daaf2b54693dd0799c0ac5517346dccb8efd01428eaaaa7ef0eae884dd64883fde3f246abed9de4b1139ca02276858b659e6b61b492be1f1f7957e18aead1ed021988f514ef8d1db3dc507465311b4d68c949f2b885c5575215bc02808c97a911a4bd9fb7eacd98ef964c742d32745830794dda84a2a634ad3036c432bd8fc5cf19ef21bbe25b16e50409b60d1043f5f90687a620324bd604ada1e1a84750527486a066f254566fed8360e16404077a14774711af3c3920ecb9baa71f344641a2644199962a5a4a7092c7ad62a92c01297ac49d6cd0d49be0d713f362557cf0eda2a99f49baa5335f81a5dddc37840021c0e0d928fe5a3b5bae42f2a0b1eeeb04470d74183b09b4e5de5ff4769478ca36a15cb7e891e2bfd2c3144b792d8576a02f8a811bbad8cbcc1485fd245b4804b813a50660ba227fc0c6ed9bc0c8effaa8c83905dfda14a78b64ade492292a9cca6ff4094adb200523f1ccb0ce2b956726fdff7e0b0e3de27557ecfeaa109884e3f7b6fbce2a6000314ad2675a23c63fe3e23918267bc2e658429218e3e60654d0f3f7673acc4aa9851cafa0646da95d1cae152abecd34fd8a1609f6cae90b435fdb3226296f799a79777db31017e4e28d009970341694da76e01649df9403e16ed3031ec73e12bbd90ae9d69172802a18b282ed1f4afdd9a1d04e37d179b6c6200dd1ab5b668f192221390775f26d46a4484b430622db3f8032fd2333c374b64cf39ebc882c8639887705b2cc1ee9c3e2b8dcc84821a2569d9dd648aec666b8ee8063d2796e470f815ffa759bac7fb1b846359a5d65a2e6ba24fad8997eb50f3bdca6b3ece4a2c5d4dcbeb799c80d74e4498e5ffb4474aaae9a4b01db39f7703975cea933b60e531ae829773fc51e4c30129ac91d87394084877b3a8d01037ccd42106731d34ce5976f35274564cda403bf09162762e6af42bf90bb7dae9351170639ed8bb2a7ec5a041e708b42789fbc../../../../usr/lib64/root/libTMVA.so.6.34.08libTMVA.so.6.34libTMVA.so.6.34.08rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootroot-6.34.08-1.el10_0.src.rpmlibTMVA.so.6.34()(64bit)root-tmvaroot-tmva(ppc-64)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    ld64.so.2()(64bit)ld64.so.2(GLIBC_2.22)(64bit)libCore.so.6.34()(64bit)libGpad.so.6.34()(64bit)libGraf.so.6.34()(64bit)libHist.so.6.34()(64bit)libImt.so.6.34()(64bit)libMLP.so.6.34()(64bit)libMathCore.so.6.34()(64bit)libMatrix.so.6.34()(64bit)libMinuit.so.6.34()(64bit)libMultiProc.so.6.34()(64bit)libNet.so.6.34()(64bit)libRIO.so.6.34()(64bit)libTMVA.so.6.34()(64bit)libTree.so.6.34()(64bit)libTreePlayer.so.6.34()(64bit)libXMLIO.so.6.34()(64bit)libc.so.6()(64bit)libc.so.6(GLIBC_2.17)(64bit)libc.so.6(GLIBC_2.32)(64bit)libc.so.6(GLIBC_2.34)(64bit)libc.so.6(GLIBC_2.38)(64bit)libc.so.6(GLIBC_ABI_DT_RELR)(64bit)libgcc_s.so.1()(64bit)libgcc_s.so.1(GCC_3.0)(64bit)libgslcblas.so.0()(64bit)libm.so.6()(64bit)libm.so.6(GLIBC_2.17)(64bit)libm.so.6(GLIBC_2.27)(64bit)libm.so.6(GLIBC_2.29)(64bit)libm.so.6(GLIBC_2.38)(64bit)libstdc++.so.6()(64bit)libstdc++.so.6(CXXABI_1.3)(64bit)libstdc++.so.6(CXXABI_1.3.11)(64bit)libstdc++.so.6(CXXABI_1.3.13)(64bit)libstdc++.so.6(CXXABI_1.3.2)(64bit)libstdc++.so.6(CXXABI_1.3.3)(64bit)libstdc++.so.6(CXXABI_1.3.7)(64bit)libstdc++.so.6(CXXABI_1.3.8)(64bit)libstdc++.so.6(CXXABI_1.3.9)(64bit)libstdc++.so.6(GLIBCXX_3.4)(64bit)libstdc++.so.6(GLIBCXX_3.4.11)(64bit)libstdc++.so.6(GLIBCXX_3.4.14)(64bit)libstdc++.so.6(GLIBCXX_3.4.15)(64bit)libstdc++.so.6(GLIBCXX_3.4.17)(64bit)libstdc++.so.6(GLIBCXX_3.4.18)(64bit)libstdc++.so.6(GLIBCXX_3.4.19)(64bit)libstdc++.so.6(GLIBCXX_3.4.20)(64bit)libstdc++.so.6(GLIBCXX_3.4.21)(64bit)libstdc++.so.6(GLIBCXX_3.4.22)(64bit)libstdc++.so.6(GLIBCXX_3.4.26)(64bit)libstdc++.so.6(GLIBCXX_3.4.29)(64bit)libstdc++.so.6(GLIBCXX_3.4.30)(64bit)libstdc++.so.6(GLIBCXX_3.4.32)(64bit)libstdc++.so.6(GLIBCXX_3.4.5)(64bit)libstdc++.so.6(GLIBCXX_3.4.9)(64bit)root-core(ppc-64)root-graf(ppc-64)root-graf-gpad(ppc-64)root-hist(ppc-64)root-io(ppc-64)root-io-xml(ppc-64)root-mathcore(ppc-64)root-matrix(ppc-64)root-minuit(ppc-64)root-mlp(ppc-64)root-multiproc(ppc-64)root-net(ppc-64)root-tree(ppc-64)root-tree-player(ppc-64)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsZstd)6.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_06.34.08-1.el10_03.0.4-14.6.0-14.0-15.4.18-14.19.1.1h@g@gg0@g0@g^@g g@gg@ggkgG g5@fX@ff@f@fU@f@fqvfp%@fffe@fdGf]@fDf.:@f*Ef'ffg@e6@eeeXe@e)e(e4@e|?ek@eaeC@eB=e*d@dϋ@ds@d@d}dX@dBzMattias Ellert - 6.34.08-1Mattias Ellert - 6.34.06-1Mattias Ellert - 6.34.04-2Mattias Ellert - 6.34.04-1Benjamin A. Beasley - 6.34.02-8Orion Poplawski - 6.34.02-7Björn Esser - 6.34.02-6Mattias Ellert - 6.34.02-5Fedora Release Engineering - 6.34.02-4Mattias Ellert - 6.34.02-3Mattias Ellert - 6.34.02-2Mattias Ellert - 6.34.02-1Richard W.M. Jones - 6.32.08-2Mattias Ellert - 6.32.08-1Mattias Ellert - 6.32.06-1Mattias Ellert - 6.32.04-2Mattias Ellert - 6.32.04-1Mattias Ellert - 6.32.02-4Fedora Release Engineering - 6.32.02-3Mattias Ellert - 6.32.02-2Mattias Ellert - 6.32.02-1Mattias Ellert - 6.32.00-5Mattias Ellert - 6.32.00-4Python Maint - 6.32.00-3Mattias Ellert - 6.32.00-2Mattias Ellert - 6.32.00-1Mattias Ellert - 6.30.06-5Benjamin A. Beasley - 6.30.06-4Iñaki Úcar - 6.30.06-3Mattias Ellert - 6.30.06-2Mattias Ellert - 6.30.06-1Mattias Ellert - 6.30.04-2Mattias Ellert - 6.30.04-1Mattias Ellert - 6.30.02-9Mattias Ellert - 6.30.02-8Fedora Release Engineering - 6.30.02-7Jonathan Wakely - 6.30.02-6Mattias Ellert - 6.30.02-5Mattias Ellert - 6.30.02-4Mattias Ellert - 6.30.02-3Mattias Ellert - 6.30.02-2Mattias Ellert - 6.30.02-1Mattias Ellert - 6.30.00-1Mattias Ellert - 6.28.08-3Mattias Ellert - 6.28.08-2Mattias Ellert - 6.28.08-1Mattias Ellert - 6.28.06-1Mattias Ellert - 6.28.04-5Fedora Release Engineering - 6.28.04-4Mattias Ellert - 6.28.04-3Orion Poplawski - 6.28.04-2Mattias Ellert - 6.28.04-1Iñaki Úcar - 6.28.02-3- Update to 6.34.08- Update to 6.34.06 - Drop patches accepted upstream or previously backported- Fix roofit/roostats test failures with gcc 15- Update to 6.34.04 - Drop patches accepted upstream or previously backported- Rebuilt for libarrow 19- Rebuild with gsl 2.8- Add explicit BR: libxcrypt-devel- Apply patches to fix build with gcc 15 - Enable roofit-multiprocess for EPEL 10 (dependencies available) - Rebuild for pythia8 8.3.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_42_Mass_Rebuild- Don't add dependencies on root-roofit-multiprocess and root-roofit-zmq to root-roofit-core for EPEL builds- Adjust stressGraphics.ref - Build for EPEL 10 - Disable the R interface for EPEL 10 (R not yet abailable) - Enable uring support for EPEL 9 (supported in kernel since RHEL 9.3)- Update to 6.34.02 - Build CLAD plugin - Removed package: root-roofit-dataframe-helpers- Rebuild for libarrow 18- Update to 6.32.08- Update to 6.32.06 - Split out ROOT 7 dependent parts of root-browsable to a separate package - Split out ROOT 7 dependent parts of root-browserv7 to a separate package- Re-enable Qt5 Web display for Fedora 41+ (qt5-qtwebengine fixed)- Update to 6.32.04 - Drop patches accepted upstream - Disable Qt5 Web display for Fedora 41+ (broken qt5-qtwebengine package)- Update ROOT's R interface for Rcpp 1.0.13- Rebuilt for https://fedoraproject.org/wiki/Fedora_41_Mass_Rebuild- Add openssl-devel-engine build requirement on Fedora 41+ - Fixes for TUri class (PCRE2 compatibility) - Fix test failure with tbb 2021.13.0- Update to 6.32.02 - Drop patches accepted upstream- Add dependency on liburing-devel to root-io - Exclude failing tutorial-tmva-RBatchGenerator_filters_vectors-py test on aarch64 (Fedora 40+)- Backport fix for failing test with Python 3.13- Rebuilt for Python 3.13- Python 3.13 compatibility- Update to 6.32.00 - Drop EPEL 8 build (now requires Python >= 3.7 and tbb >= 2020) - Dropped patches: 12 - New patches: 6 - The JsMVA python module is now a submodule of the ROOT python module - The notebook package was merged with the JupyROOT package- Rebuilt for libarrow.so.1601 - Improved fontconfig support- Do not test with Pandas on 32-bit architectures- R-maint-sig mass rebuild- Rebuilt for libarrow.so.1600- Update to 6.30.06- Support StandardSymbolsPS.otf- Update to 6.30.04 - Drop patch root-adjust-test-for-failures-on-aarch64-ppc64le-s390x.patch (accepted upstrem) - Exclude failing TClingDataMemberInfo.Offset test on s390x- Rebuilt for libarrow.so.1500- Exclude failing gtest-math-matrix-test-testMatrixTSparse on Fedora 40 (aarch64, ppc64le and s390x)- Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild- Rebuilt for TBB 2021.11- Define PYTHON_EXECUTABLE when calling cmake (Fixes EPEL 8 build)- Adjust tests for zlib-ng- Use "standardsymbolsps" instead of "symbol" when searching for the Symbols font in order to not find Noto Symbols instead- Exclude pyunittests-pyroot-numbadeclare test- Update to 6.30.02- Update to 6.30.00 - Removed subpackages: root-io-gfal and root-roofit-common - Dropped patches: 6 - New patches: 6- Rebuilt for libarrow.so.1400- Enable RooFit::MultiProcess on Fedora 40+- Update to 6.28.08 - New subpackage root-tmva-utils (split off from root-tmva) - Port to pcre2- Update to 6.28.06 - Drop patches root-testRooAbsL-test-compares-two-doubles-and-fails.patch and root-strlcpy.patch (fixed upstream)- Rebuilt for libarrow.so.1300- Rebuilt for https://fedoraproject.org/wiki/Fedora_39_Mass_Rebuild- Fix build on Fedora 39+ where glibc has strlcpy and strlcat - Enable build of root-gui-qt6webdisplay sub-package if Qt6 is available- Rebuilt for Python 3.12- Update to 6.28.04 - Drop patch root-RF-Rewrite-RooProdPdf.TestGetPartIntList-unit-test.patch (previously backported) - Enable Apache Arrow support (64 bit architectures only)- R-maint-sig mass rebuildroot-tmva  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~6.34.08-1.el10_06.34.08-1.el10_06.28.08 TMVABDTEventWrapper.hBinarySearchTree.hBinarySearchTreeNode.hBinaryTree.hCCPruner.hCCTreeWrapper.hClassInfo.hClassification.hClassifierFactory.hConfig.hConfigurable.hConvergenceTest.hCostComplexityPruneTool.hCrossEntropy.hCrossValidation.hCvSplit.hDNNAdadelta.hAdagrad.hAdam.hArchitecturesCpuCpu.hCpuBuffer.hCpuMatrix.hCpuTensor.hReferenceReference.hDataLoader.hTensorDataLoader.hTCudnn.hBatchNormLayer.hCNNContextHandles.hConvLayer.hMaxPoolLayer.hDLMinimizers.hDataLoader.hDeepNet.hDenseLayer.hFunctions.hGeneralLayer.hLayer.hMinimizers.hNet.hOptimizer.hRMSProp.hRNNGRULayer.hLSTMLayer.hRNNLayer.hReshapeLayer.hSGD.hTensorDataLoader.hDataInputHandler.hDataLoader.hDataSet.hDataSetFactory.hDataSetInfo.hDataSetManager.hDecisionTree.hDecisionTreeNode.hEnvelope.hEvent.hExecutor.hExpectedErrorPruneTool.hFactory.hFitterBase.hGeneticAlgorithm.hGeneticFitter.hGeneticGenes.hGeneticPopulation.hGeneticRange.hGiniIndex.hGiniIndexWithLaplace.hHyperParameterOptimisation.hIFitterTarget.hIMethod.hIPruneTool.hInterval.hKDEKernel.hLDA.hLogInterval.hLossFunction.hMCFitter.hMethodANNBase.hMethodBDT.hMethodBase.hMethodBayesClassifier.hMethodBoost.hMethodCFMlpANN.hMethodCFMlpANN_Utils.hMethodCFMlpANN_def.hMethodCategory.hMethodCompositeBase.hMethodCrossValidation.hMethodCuts.hMethodDL.hMethodDNN.hMethodDT.hMethodFDA.hMethodFisher.hMethodHMatrix.hMethodKNN.hMethodLD.hMethodLikelihood.hMethodMLP.hMethodPDEFoam.hMethodPDERS.hMethodRuleFit.hMethodSVM.hMethodTMlpANN.hMinuitFitter.hMinuitWrapper.hMisClassificationError.hModulekNN.hMonitoring.hMsgLogger.hNeuralNet.hNeuralNet.iccNode.hNodekNN.hOptimizeConfigParameters.hOption.hOptionMap.hPDEFoam.hPDEFoamCell.hPDEFoamDecisionTree.hPDEFoamDecisionTreeDensity.hPDEFoamDensityBase.hPDEFoamDiscriminant.hPDEFoamDiscriminantDensity.hPDEFoamEvent.hPDEFoamEventDensity.hPDEFoamKernelBase.hPDEFoamKernelGauss.hPDEFoamKernelLinN.hPDEFoamKernelTrivial.hPDEFoamMultiTarget.hPDEFoamTarget.hPDEFoamTargetDensity.hPDEFoamVect.hPDF.hPattern.hQuickMVAProbEstimator.hROCCalc.hROCCurve.hRTensor.hxxRanking.hReader.hRegressionVariance.hResults.hResultsClassification.hResultsMulticlass.hResultsRegression.hRootFinder.hRule.hRuleCut.hRuleEnsemble.hRuleFit.hRuleFitAPI.hRuleFitParams.hSVEvent.hSVKernelFunction.hSVKernelMatrix.hSVWorkingSet.hSdivSqrtSplusB.hSeparationBase.hSimulatedAnnealing.hSimulatedAnnealingFitter.hTActivation.hTActivationChooser.hTActivationIdentity.hTActivationRadial.hTActivationReLU.hTActivationSigmoid.hTActivationTanh.hTNeuron.hTNeuronInput.hTNeuronInputAbs.hTNeuronInputChooser.hTNeuronInputSqSum.hTNeuronInputSum.hTSpline1.hTSpline2.hTSynapse.hTimer.hTools.hTrainingHistory.hTransformationHandler.hTypes.hVarTransformHandler.hVariableDecorrTransform.hVariableGaussTransform.hVariableIdentityTransform.hVariableImportance.hVariableInfo.hVariableNormalizeTransform.hVariablePCATransform.hVariableRearrangeTransform.hVariableTransform.hVariableTransformBase.hVersion.hVolume.h.build-id91c50b5ff6c3ccc1015a0cd5330dd7bdf2830ca4libTMVA.rootmaplibTMVA.solibTMVA.so.6.34libTMVA.so.6.34.08libTMVA_rdict.pcmroot-tmvaLICENSE/usr/include/root//usr/include/root/TMVA//usr/include/root/TMVA/DNN//usr/include/root/TMVA/DNN/Architectures//usr/include/root/TMVA/DNN/Architectures/Cpu//usr/include/root/TMVA/DNN/Architectures/Reference//usr/include/root/TMVA/DNN/CNN//usr/include/root/TMVA/DNN/RNN//usr/lib//usr/lib/.build-id//usr/lib/.build-id/91//usr/lib64/root//usr/share/licenses//usr/share/licenses/root-tmva/-O2 -fexceptions -g -grecord-gcc-switches -pipe -Wall -Wno-complain-wrong-lang -Werror=format-security -Wp,-U_FORTIFY_SOURCE,-D_FORTIFY_SOURCE=3 -Wp,-D_GLIBCXX_ASSERTIONS -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1 -fstack-protector-strong -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1 -m64 -mcpu=power9 -mtune=power10 -fasynchronous-unwind-tables -fstack-clash-protectiondrpmzstd19ppc64le-redhat-linux-gnudirectoryC++ source, ASCII textELF 64-bit LSB shared object, 64-bit PowerPC or cisco 7500, OpenPOWER ELF V2 ABI, version 1 (GNU/Linux), dynamically linked, BuildID[sha1]=91c50b5ff6c3ccc1015a0cd5330dd7bdf2830ca4, strippedASCII text9RPRRRRRRRRRRRR.R6R'R-R7R+R/R4R"R2R&R3R%R5R#R,R*R8R!R0R$R1R)R(R RRRRRRRR RRR R R RRR RRRRhttps://bugz.fedoraproject.org/rootutf-8664b5f945abfc2b438902ecf897f0a17dc1eb30aa4fcf6607915aa12f0a47f46017d225ca38bea89843225b82465d282a74c1a2387f26e5249062556a5ebf304?(/h}DLT3root-tmva-6.34.06-1.el10_0:O{:R 0R22!#8> 6 _ ܉3!}Nbh&3م~Xh ֜tWo>'>hD07jW(GL*S&Q[G$M&ۊa<I6[ :(([ 𕅨윙6>'ЍYţO 48hswJffK0U|}E- N r&YնEjӬZ)Pξc閱 xr$u7 (lwsեNj7tcQ̈́c9x`` w_3ggFTwer\5ED=O5nZbZ8U,uogSALG,YBz|&A ֊H(068dc4cef37109020212c97e2dbec33b32d5edc99f280e30351e68151fd637d4a717e85bd9aa5049c89f61800ca8b2bf1619!HH.]QmZr?XX3/蒟'BZh91AY&SY!# vܿ}߾GM|yx><DK᜗/Li@4M2dh$SOQ2Ah z4 C@=Ai@zGOIbz CA9ЌX1D2̢\\ rLI"VF(")ȎB)Bҍ R)BB$B4"P#0- @ ҴJ4Ҩd(*Ҵ)HH@2MR Z h\T AJFP)iJZ" Q(hZ$%ibr2Vh)( 2 k C% $ E J FdB%k $ Z)2r)3i2hFV((T(C%H2RiLFZ J@jZ)P\(@Z2i"J R%2L2FG.KHhBdѐ)@!BAE*9)B H1 P-(JЉ@eHU)B@*dRJЍ(d"4*4Ђ4 R RҢ!J@ !B JТ䢴TrM@D Ld@ ("$ "oS] _1wȸO\3J;6j$6u$u!B*%م3YY49< 忿CEu^i)?զ,`fvKջA(]"P0B< KD 82LUj: `-? :Z HL4bp*UgZ䓜.4RL_chO7H/ٷϖXZtS#BDq%xOM{}1Ǯ 0>{!y-ahL8^ $K B˸B(1c!_ZRHB+`Q8Uqk>-i3>RXF * d!3燠t:BP!@@д%(QE @b*;>G\|1;yI69OȉhAXhe !H@'@CY 6m/۰C\cT9wzx9 A?*+! ?by@ eӅ[GTc9QPoxyCwTMDzE5{/{KYVHvH?~b#JB1l̗o]>u h9SQA 9]VA`%!"PBRQ]1E54(ke#צYWn\72l]J!ۋt:v'p+ x^S8_#~(Jȁ>]r䛄Z nA㝘#Nfi= $pCX8#O PByNu\9qK+23uƇ9p@y!HjfuvGӻWD~-(Rw'1p9)o&U+Țj+M:@ٯ:{NG_y!>ض ?Gerz :]$ÒJuKvK9W1;+$7Jg}v*H"'\up O>v*&#ER'~Ga-'HeWbʆVG͞g}F!/st[ey=ICo??y0B=nCmj ktڈӃtt[Ɣ9;[׉1-@M˸ 6mAYӥOO,ӟ S^`+'+3Y<4$Seds`$4pĄTnbqV |\u)xЩOبi'{ے8 JYh 4>0;o<h9|H>7 %~"+Cܩ)gc8Gem@Aqs"8lqC yӊi[\Pʃ*xFT9vrOre^u;WW[ W3-4Qul%q1®vg?ՕIz{}17Q e<C-`uܼWQh{sSׇW/|90GYӦ{[VMI!bhMꥤ?G䉿BSvA@k vIQT(}SDsɹ0IcZ ,Vrgm,ř^,%X $_@BgݏMM)GAl@=yq*_~`|b.A/y h>&yh%x xݏ?p#.Q +4&W:v5QQ=(FoɍshJ4 ٭հ$qɜac<&f8VR7̍.ɪdO(`?y Tc☍_m Krn\%tkYor֦Đڇ!D"֢3dJ!Mc :<؁WR?, 9+62 \TS9nNgy'/hZ@4YV&YP)iS!̨MԱug]*!lDX~$h丈ȮM5$BK AWL71W89a.grTioĿĠ6-Y"ڬH>ն<;QeG+KٝtRE{*"ny(ӵ 2xO=%P=ChyP1#QWOO49.aMe-)53ٰx yqA9e%!/dNye)XZ(0&CA$VrvQu{aNc m#ntZ) V=I8D=3[$@ʙYVjK_ň~oH 89;l68ȗf9m,h!lfUˋ`kȖظCc`8^)Gzw9D;;Rx2D[Htq's;5(fixh35`[4-)[5m#]|Q[Xɤ\W(8%WF'rQJ rbr\z 36+: R:%_=;_T6]A5yť}w ɵ+ps[XH-xDl-]yJLoINt89o@ߠD(ę$`P ή#K=zwlk ٭-me`@^Uή Tuذ{l梓^y[' f.÷B#q!TXix?ߟsD-rCȣI)}Pn0yw;XmݐkXnÞ:y3(>iYK@=lFo`w?c v)?i?{S"7lSv^.ǐaN&&S :v<n9wKeV}w:t[3qٕ^P+M;2) I %u8 ;Ě?#I/q}wA:`VW`ljTC$z]ۇPl&5-n[{#rJdFRKPunRaUxqTCgPW&r떺uh_}5.'~Yx?e67f^62,'s+`6JKOr :܍ZfLN^xk]]#wtȭfaj0gzTגlf<d)BrsD~Aj;si'8]$*I`6u^g5n;W4icFi1r}E==~Õ%d,#)!XgiJG_{B30# ZW+`G`v{W5w4=WqS]7 6'I֊JqH9!oܤPߋ^/n]v!*jl?p Cm/V&8@ړAX͋Ӷת}1H2u:}cQߎ n[u| h֭/W"?0FWف'K,a,"t`#{|NwFm2ܵ.ԦgjNTP .{~Nj[9AmgUfZU_ 84)⅂u(ZS%4{8̈ms® t.) '+<7ؼPϊXO; MAm #B=N_)CtħKARL=Z̼2?XՓt0%ʕ ĕ1T%* ov~FqX#htԵëf$HA !fL4FÍFgVdBGܟt]3i-oJ`c+fnz ZN\g;Y= Q"u$vkQކRoKc%+L TІ,Fs̡w؏RRʏNޠOq7i3z^C @+/T{OS+M^ZvaD%*—rx/ !ZxrޢJb<ICMl6hfE6DE6${2|jy1f}`=5w墜b)M3|e[Vk3P"sYɀs4H?O8S:2NATl56 G(X ʆkw5j *ӢQq0Ѧ cByG6Jx1E`U,LvNB!'t_lA `]T:X`~Ơ6 +^@f$neZH*EZ~QK^{ )I-NM`Ȋzc:4,;= 0NIq,BnHEֳ1k~PK߷+ǐ*i`ᕇmA  H&4ca8Զ &7;ܑBm> 3%/#ZhÐ犅clvѲTU;CB ÛbV j(L&!Ԥ-CB܋QϣXc:g^C1,21>JyJwjonVGxl3LQUd[2uޘ6-I}DtcSyR-'I$8#&b7p9Wˀ?8j>j& wfPj=y&D\/% _Ŋ">2Z$4el,13 ka`saLop3;`C5&bn5Uڝ*DSH '0cDz6(BD!ƿt:liSN;<AHkWzXfh k 4 LR0jA &]@ l"3 IDKuSBк$nDmn9ܛhʹ$‹4]^Rɝp$[Vs\oW} KvT#W&P@a9Gl)u{D4ⅹLʌa͇/DcMg> I1(_F9Ŝ4babLw4$kO?q̀j&AY<3[0럿ܱako G%[/_ʟNM{I%K 9?۲)r%O&+I1^NsSYdzEaR`_(xŶE(: &ObNRxGO(:t DK;F2PQq$,f9K xr'WPQ^/ I!EvD_'bsZxCprb]䊀 2fadf;>'e|תk.s*Jz_eì'(kVC3q2\>Q :0_;_/R庲z wG {2N%op3p-EƯVʇ{l^;:-kwR,:5qՃU[hjL"զI D Mbcf\%,'J<] ڮYܽe⣒5Þ^ZоMsl3c>X6wGP=KE~ᖔ9DaJ`E~EziJ}fT9'ÙHff 87ZK!'E2;PdC= ?KzcƽC䡶d?W FI 'Gk;vKpgӼZ_?8$p %Y+| sih%7I"݀Оk  #ѠR jCRTPk;M#t^Hxv~KU\)T+c J[*~Yce4K3/H1=!JLae(.)`HZ{ϖguƮ-Ln_z|b؀pjV &Sʉ|/yj^S_2/)_#=.4b;= P|A|[LՍUX.ES#8[陱% !rR-ưܠdN/_+[uP;tA=" nz3IIr$ϧ@'Ɨ $*pTv4.YK& [7Aw=nGbv Y\3>q~1K[yEe#3T6ڊPs&8ڠ #$:?I^gM{҅V-H\_~k޿/A'޽Y~v0]BV v&Udϳ~ˍ(d:x+5Ep \{e9)oU8vރ Kt,\}(Zs:y|,B2|q/% gst& Qf`]u&m΀e5tSDjb:ucEnh0p|!Ĉ4_mPQ?ˤ ]ŜH$nätsHv:ᩁ݂XnޒWa.7rYaN/)chVE8ۋJC]>)-x#j. ]k%}; 4 ͈I`ڢS6h.uBhtLluwJJ]{?fA/ռy"c&2+pX#ٻ jdYfm?I64kad,`ǘѾKWfو08Qn+[!ɭF낄 ~orݮ'QY'sӔf|a{ 4mxC\2'鉸ں TȈC$*ubwޓQT.dY㾐 m"n`Kp ]P@,Z-Xo'Ru౴_H^J 3)7uGkExת[rt{ ,BĔH++[mrjۆ;AOPh2`2VmPPqh[ͺiR~06eiUy&X hd\\ %D.>) ÊHpIA=[5=|lvήi2kGAWc> }ddnLf PveBV2cŇ>T#l %oV !_oSvtҝېwǓ{igqIj7S@7mbpc7bT՝ u-\O\ uH0!ոB`>Sr6' /YLEZE3DOknL99cFg|7a4Zevl LDq-.V>#E; ADW4ɜ HWSWP.Ԟ\)5Y`=LYuh$Q]")QmN_M:K,e3d%sWgO>SԴmeQ̣{ TVZ9pqȱПv*сNXJ3'iQn4C)aܠؔujQXEtEr~_=&U (H*m@ǜv% &"_Gխ&ed\0EudBl.2$63:;s9g+_(_`ӛBEQ;T V=1k!1|;?u>dtpVүh?.“J:XE4:(?LBvpH 1z&z]EJQlj`HMȀ;j%sR2a Ɔ6)ynqK`gN/@BC)/A7MF"g!ZHfs;H~Ml|Q orojl_4ᰋS5O@FhOW& $ם1Elp_cMVL5lp;- 3BC;@WK Y=HO!f^/6z> mb_5S!Pu pէ;Aoj`Zqf-PP9x!--T5<07be^hPs[~ى%$zak2Ŗ͘p^C͖ U*FF+C?nN|ty߻Sb~# APy5s/Gj铚:IN i:`쭫+{@q^.i"\mwJ5Z6D̈])"'FáYy뛾}(#5q>] "d́G$Ue֔T Xv}K܉ìGAň ȥ4Bxk_bwZ䥿|3T.K;&%Q%\jui[^}:O',Oȥ(ڌOdBGͿd$%Œ]z YRL_|?PNȵ}gMw%WefizN6_՝^_s@w@,sĸZ)kםY=j A[ *ZäWa^w X`+sH,5N}_с{J Ӑ~8k6"Uls:Kː)oBu ^:+"0_dE%z}"dwڨ5׀᪻-j#w" RAv'M2H{~+,c(?b.L6ˍ2au=֡a H1:~7Fܗ6WXU~BSuX\ܾBRC%n[~U:ɡ}*|"2['[X4s"*B}'zpJZ(>3=GS3=<ζNb^9dMѓpxUuH˹Iy]DZ:/Ί)%cKTxEX;wkhpqH]|;l^ȋR=rTu؁t1unEipk2YUT~{G6@#j}o:AHN6[j|} 1KOXג B}$s~q\}"ogni3e=plbBsxTIUf]=#Upjī%g+&ty(cV|{9AcHñ9_yQ= (+;t v cau?EYp:o'`r 53懹X K:.l䌅p.xi!ܡj gW!8>|qv9B!a!0,F0$sϸV|\[aP:HMf5P˽WYm-N.ũ'kY+a!?mGa% ζFVHH0/Xv= RasJd:}~4`vh:JO}A7jQ%gn r7 /ZgHYک qhEL {F,1эho% !7Ǐ+j鸅ݠ֥U6q'M(r{B1Ԁ1&2~ry4,3YtSuDU_ 32&h4PtAu %~O%}A;meQ;_>S^qg/w6o{Tݑrh/"bCPe@Fmup' "i쳸fy 6pMq_|$ %Cy+kt޵mMN)լQgFC_&}D`ǰT[,@K*Ɛ`xߐM[4UڪV[#唗ub&Uo i4`˳Je^_$"6^=#:gy0faȻ@7IVv.vFj޷kbu x$$ef.0-S?O!l0GM=24bf<9^A' mvNI7_+'j60|DW#,4e3v/m?H~/*ei!DmZa;-Ai/!RAXK4'N53{R/OOjM/=^EH\5젩|:`]!!Se&h zIn=k7WXd{(4'fkABxm@5VyxvVn흝1hqqǔQJZ|w zk3.d"f䅔#w53thҦ#_![85:xQ]Q%3>e֛dbylsRS%)#m[UǶ­ @ьRTb6Q,Yn6ҳ.\ѱulz:>j"! kAQwwÄt97_zB"r@SYkջYq}=ut=\Xa#xdGÆQm! Y%CJlX6Kc**yˎzW8}ɺDKn?1=JIe?uEXG4o!FJaq \ؔLcŝ$@ "JʟVn, -U zsA-P;?NՁ Hɷ~N b#5<WFaً==oɉ[;!\pN{QCmطu; ImTk4y1ɒ[y.?]Dx8@doeJH5@qLingFbLLq!FNFۘ~psgK՘U2b3~:,?DH<F ОCS+ng/\qcF:"JΣ+[ '֗g+wŋd>C HYsu;fל3F\Xr)6vz_ D|0h#O&,4 t Lm!D)U 0'k폀U<~|՚!6ke%S(TӰ|S=/E) 3(K|IuM]/rt>#,, i| kJP\#6龻jy{/~NlCLĘٴ:|j-^y ݪ+TJ(Q|d\4OAͦ!BtU+0:cmE-\k9kbWcxQ4((zoR "9[XCF?>޲`BQpSQz%O &ޑz53q#WZz?p`ѷMyCJ k{*YU*^8K:iS6~#3˲}>aD&?wQ)gx;h} șo\ G=>>}pO}a9: ľ 'rIϾ07Җ4)2rSx9?/ n~51OCg58`i>p!|sD+1Xt}gOc +x|M'0 \N(0';񲢨~fp7rN-ptNaq\hp \su5GkDH I_0bd(hުdt. 'a n< 1Oe+2H};U< ǥߞ3V涩[$N岁,``aN+n)_p3#jG&^4#_WrM3^2E ju?RyL9ph~G]YGoGi[jH mj%3sTc겟1@ W0˱vh2>`$آ^V#q[n +⾬q[L`؂cR /*ZES}bfd𛝠TF}O;kp*0Gc;o"r;G٢:2E\Vɽ]cfNYGv 2:@%[ *ء*Eّ$1Ntj.bU" KS<ʑS{pNޯz 8uh>Bꠔ8DG;w\k'0Z'NFTr:8>/^06YS7t-ۋCmjiXnGKOP1PL͜ L 骆QVٲL0yrD W/%vXKOz!RI5s UY$杏A7:߲CBS7׭ t :C\K shϢ:vV.zWHpRfPFHMVX$*kAy=H`v2-Jf:3NKO3c5ԑ;ؼbfePyizDK-ʘ K#}ɵHR`y(~<1cqSd5dS{×̗ܕԮ>^;*mc2J>(-&YvkegЩ{ʦ4Z2?iƛ7FV_;+h`ΪmݞI.$Pa &b j ~gNUʜMcs.s%E>2 ;.#JR@ӓ)Iuu΃u@6ibH[Q*0cCakϺnۗA {Gϴ50u4B%X,i/̱糯Ai\K׼/u)vfXS|P\}~I[CtS'~"NG׈+Cc^,P!eP992avO>#yE ]zzbS ;7kD'%ɴ|mzzj'zɯSY%RXItSUءE 5FըMᗀĝaR޺ɼvW!w!e f-kҪgj18E &87LJquU-̀A, |jPZ=ˀgLڕazu0SN6ccB}dZ,õ PU `e6yO{*tɋvf,=YCe ”<"W`m_"qɄ1Dǧ!IN۲R PХb+Iv}>'Ϧ5 SXnф8y<{Ӧ+a 4fn >zw1:X{ndYݠT5i8TJ~S Y[!M0ڏ^@W"(}uxfƞw܅L_r d):6+}(,DTtS[nAtTlv[OXVt"Q1 |d.]9(r>=a?u$iT)K=76@-=<fuJg@ dv=Ppn M 'pI諾abI>^뼡 E<зV@l.Ϳ{AIl9 eX~n*C|3BǬưT+MR2\㐥訋t]RsYQ|ٮq|.! dˆTz=zל$h,GfdtHE7&.}[a$;Fd1Wl d멅X-9eilJ}"??Eviv #>eꏹYw^G'i:Ktcڽ=wnbQ[JZꎐLYn)?6{i+x9K/wc?7-Y '\]DӋ^ 6a r+,nvO7bq?'uCݬ=Ռ6j_AԕF8F?}>Nq./6jQoMY-Bl`wTgm?~`QBWnlgPfaV|zkDžyBa4Dk =>? EN(a*"jA\>:H~s`FF%s1لFf|Dy