Z3
Public Member Functions | Data Fields
Solver Class Reference
+ Inheritance diagram for Solver:

Public Member Functions

def __init__ (self, solver=None, ctx=None, logFile=None)
 
def __del__ (self)
 
def set (self, *args, **keys)
 
def push (self)
 
def pop (self, num=1)
 
def num_scopes (self)
 
def reset (self)
 
def assert_exprs (self, *args)
 
def add (self, *args)
 
def __iadd__ (self, fml)
 
def append (self, *args)
 
def insert (self, *args)
 
def assert_and_track (self, a, p)
 
def check (self, *assumptions)
 
def model (self)
 
def import_model_converter (self, other)
 
def unsat_core (self)
 
def consequences (self, assumptions, variables)
 
def from_file (self, filename)
 
def from_string (self, s)
 
def cube (self, vars=None)
 
def cube_vars (self)
 
def proof (self)
 
def assertions (self)
 
def units (self)
 
def non_units (self)
 
def trail_levels (self)
 
def trail (self)
 
def statistics (self)
 
def reason_unknown (self)
 
def help (self)
 
def param_descrs (self)
 
def __repr__ (self)
 
def translate (self, target)
 
def __copy__ (self)
 
def __deepcopy__ (self, memo={})
 
def sexpr (self)
 
def dimacs (self)
 
def to_smt2 (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Data Fields

 ctx
 
 backtrack_level
 
 solver
 
 cube_vs
 

Detailed Description

Solver API provides methods for implementing the main SMT 2.0 commands: push, pop, check, get-model, etc.

Definition at line 6436 of file z3py.py.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
  solver = None,
  ctx = None,
  logFile = None 
)

Definition at line 6439 of file z3py.py.

6439 def __init__(self, solver=None, ctx=None, logFile=None):
6440 assert solver is None or ctx is not None
6441 self.ctx = _get_ctx(ctx)
6442 self.backtrack_level = 4000000000
6443 self.solver = None
6444 if solver is None:
6445 self.solver = Z3_mk_solver(self.ctx.ref())
6446 else:
6447 self.solver = solver
6448 Z3_solver_inc_ref(self.ctx.ref(), self.solver)
6449 if logFile is not None:
6450 self.set("solver.smtlib2_log", logFile)
6451
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.

◆ __del__()

def __del__ (   self)

Definition at line 6452 of file z3py.py.

6452 def __del__(self):
6453 if self.solver is not None and self.ctx.ref() is not None:
6454 Z3_solver_dec_ref(self.ctx.ref(), self.solver)
6455
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.

Member Function Documentation

◆ __copy__()

def __copy__ (   self)

Definition at line 6874 of file z3py.py.

6874 def __copy__(self):
6875 return self.translate(self.ctx)
6876

◆ __deepcopy__()

def __deepcopy__ (   self,
  memo = {} 
)

Definition at line 6877 of file z3py.py.

6877 def __deepcopy__(self, memo={}):
6878 return self.translate(self.ctx)
6879

◆ __iadd__()

def __iadd__ (   self,
  fml 
)

Definition at line 6574 of file z3py.py.

6574 def __iadd__(self, fml):
6575 self.add(fml)
6576 return self
6577

◆ __repr__()

def __repr__ (   self)
Return a formatted string with all added constraints.

Definition at line 6857 of file z3py.py.

6857 def __repr__(self):
6858 """Return a formatted string with all added constraints."""
6859 return obj_to_string(self)
6860

◆ add()

def add (   self,
args 
)
Assert constraints into the solver.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s
[x > 0, x < 2]

Definition at line 6563 of file z3py.py.

6563 def add(self, *args):
6564 """Assert constraints into the solver.
6565
6566 >>> x = Int('x')
6567 >>> s = Solver()
6568 >>> s.add(x > 0, x < 2)
6569 >>> s
6570 [x > 0, x < 2]
6571 """
6572 self.assert_exprs(*args)
6573
def Int(name, ctx=None)
Definition: z3py.py:3010

Referenced by Solver.__iadd__(), Fixedpoint.__iadd__(), and Optimize.__iadd__().

◆ append()

def append (   self,
args 
)
Assert constraints into the solver.

>>> x = Int('x')
>>> s = Solver()
>>> s.append(x > 0, x < 2)
>>> s
[x > 0, x < 2]

Definition at line 6578 of file z3py.py.

6578 def append(self, *args):
6579 """Assert constraints into the solver.
6580
6581 >>> x = Int('x')
6582 >>> s = Solver()
6583 >>> s.append(x > 0, x < 2)
6584 >>> s
6585 [x > 0, x < 2]
6586 """
6587 self.assert_exprs(*args)
6588

◆ assert_and_track()

def assert_and_track (   self,
  a,
  p 
)
Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.

If `p` is a string, it will be automatically converted into a Boolean constant.

>>> x = Int('x')
>>> p3 = Bool('p3')
>>> s = Solver()
>>> s.set(unsat_core=True)
>>> s.assert_and_track(x > 0,  'p1')
>>> s.assert_and_track(x != 1, 'p2')
>>> s.assert_and_track(x < 0,  p3)
>>> print(s.check())
unsat
>>> c = s.unsat_core()
>>> len(c)
2
>>> Bool('p1') in c
True
>>> Bool('p2') in c
False
>>> p3 in c
True

Definition at line 6600 of file z3py.py.

6600 def assert_and_track(self, a, p):
6601 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
6602
6603 If `p` is a string, it will be automatically converted into a Boolean constant.
6604
6605 >>> x = Int('x')
6606 >>> p3 = Bool('p3')
6607 >>> s = Solver()
6608 >>> s.set(unsat_core=True)
6609 >>> s.assert_and_track(x > 0, 'p1')
6610 >>> s.assert_and_track(x != 1, 'p2')
6611 >>> s.assert_and_track(x < 0, p3)
6612 >>> print(s.check())
6613 unsat
6614 >>> c = s.unsat_core()
6615 >>> len(c)
6616 2
6617 >>> Bool('p1') in c
6618 True
6619 >>> Bool('p2') in c
6620 False
6621 >>> p3 in c
6622 True
6623 """
6624 if isinstance(p, str):
6625 p = Bool(p, self.ctx)
6626 _z3_assert(isinstance(a, BoolRef), "Boolean expression expected")
6627 _z3_assert(isinstance(p, BoolRef) and is_const(p), "Boolean expression expected")
6628 Z3_solver_assert_and_track(self.ctx.ref(), self.solver, a.as_ast(), p.as_ast())
6629
def is_const(a)
Definition: z3py.py:1162
def Bool(name, ctx=None)
Definition: z3py.py:1568
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.

◆ assert_exprs()

def assert_exprs (   self,
args 
)
Assert constraints into the solver.

>>> x = Int('x')
>>> s = Solver()
>>> s.assert_exprs(x > 0, x < 2)
>>> s
[x > 0, x < 2]

Definition at line 6544 of file z3py.py.

6544 def assert_exprs(self, *args):
6545 """Assert constraints into the solver.
6546
6547 >>> x = Int('x')
6548 >>> s = Solver()
6549 >>> s.assert_exprs(x > 0, x < 2)
6550 >>> s
6551 [x > 0, x < 2]
6552 """
6553 args = _get_args(args)
6554 s = BoolSort(self.ctx)
6555 for arg in args:
6556 if isinstance(arg, Goal) or isinstance(arg, AstVector):
6557 for f in arg:
6558 Z3_solver_assert(self.ctx.ref(), self.solver, f.as_ast())
6559 else:
6560 arg = s.cast(arg)
6561 Z3_solver_assert(self.ctx.ref(), self.solver, arg.as_ast())
6562
def BoolSort(ctx=None)
Definition: z3py.py:1533
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.

Referenced by Goal.add(), Solver.add(), Fixedpoint.add(), Optimize.add(), Goal.append(), Solver.append(), Fixedpoint.append(), Goal.insert(), Solver.insert(), and Fixedpoint.insert().

◆ assertions()

def assertions (   self)
Return an AST vector containing all added constraints.

>>> s = Solver()
>>> s.assertions()
[]
>>> a = Int('a')
>>> s.add(a > 0)
>>> s.add(a < 10)
>>> s.assertions()
[a > 0, a < 10]

Definition at line 6781 of file z3py.py.

6781 def assertions(self):
6782 """Return an AST vector containing all added constraints.
6783
6784 >>> s = Solver()
6785 >>> s.assertions()
6786 []
6787 >>> a = Int('a')
6788 >>> s.add(a > 0)
6789 >>> s.add(a < 10)
6790 >>> s.assertions()
6791 [a > 0, a < 10]
6792 """
6793 return AstVector(Z3_solver_get_assertions(self.ctx.ref(), self.solver), self.ctx)
6794
Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s)
Return the set of asserted formulas on the solver.

Referenced by Solver.to_smt2().

◆ check()

def check (   self,
assumptions 
)
Check whether the assertions in the given solver plus the optional assumptions are consistent or not.

>>> x = Int('x')
>>> s = Solver()
>>> s.check()
sat
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> s.model().eval(x)
1
>>> s.add(x < 1)
>>> s.check()
unsat
>>> s.reset()
>>> s.add(2**x == 4)
>>> s.check()
unknown

Definition at line 6630 of file z3py.py.

6630 def check(self, *assumptions):
6631 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
6632
6633 >>> x = Int('x')
6634 >>> s = Solver()
6635 >>> s.check()
6636 sat
6637 >>> s.add(x > 0, x < 2)
6638 >>> s.check()
6639 sat
6640 >>> s.model().eval(x)
6641 1
6642 >>> s.add(x < 1)
6643 >>> s.check()
6644 unsat
6645 >>> s.reset()
6646 >>> s.add(2**x == 4)
6647 >>> s.check()
6648 unknown
6649 """
6650 assumptions = _get_args(assumptions)
6651 num = len(assumptions)
6652 _assumptions = (Ast * num)()
6653 for i in range(num):
6654 _assumptions[i] = assumptions[i].as_ast()
6655 r = Z3_solver_check_assumptions(self.ctx.ref(), self.solver, num, _assumptions)
6656 return CheckSatResult(r)
6657
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3431
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.

Referenced by Solver.model().

◆ consequences()

def consequences (   self,
  assumptions,
  variables 
)
Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])

Definition at line 6713 of file z3py.py.

6713 def consequences(self, assumptions, variables):
6714 """Determine fixed values for the variables based on the solver state and assumptions.
6715 >>> s = Solver()
6716 >>> a, b, c, d = Bools('a b c d')
6717 >>> s.add(Implies(a,b), Implies(b, c))
6718 >>> s.consequences([a],[b,c,d])
6719 (sat, [Implies(a, b), Implies(a, c)])
6720 >>> s.consequences([Not(c),d],[a,b,c,d])
6721 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
6722 """
6723 if isinstance(assumptions, list):
6724 _asms = AstVector(None, self.ctx)
6725 for a in assumptions:
6726 _asms.push(a)
6727 assumptions = _asms
6728 if isinstance(variables, list):
6729 _vars = AstVector(None, self.ctx)
6730 for a in variables:
6731 _vars.push(a)
6732 variables = _vars
6733 _z3_assert(isinstance(assumptions, AstVector), "ast vector expected")
6734 _z3_assert(isinstance(variables, AstVector), "ast vector expected")
6735 consequences = AstVector(None, self.ctx)
6736 r = Z3_solver_get_consequences(self.ctx.ref(), self.solver, assumptions.vector, variables.vector, consequences.vector)
6737 sz = len(consequences)
6738 consequences = [ consequences[i] for i in range(sz) ]
6739 return CheckSatResult(r), consequences
6740
def Bools(names, ctx=None)
Definition: z3py.py:1579
def Not(a, ctx=None)
Definition: z3py.py:1649
def Implies(a, b, ctx=None)
Definition: z3py.py:1621
Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c, Z3_solver s, Z3_ast_vector assumptions, Z3_ast_vector variables, Z3_ast_vector consequences)
retrieve consequences from solver that determine values of the supplied function symbols.

◆ cube()

def cube (   self,
  vars = None 
)
Get set of cubes
The method takes an optional set of variables that restrict which
variables may be used as a starting point for cubing.
If vars is not None, then the first case split is based on a variable in
this set.

Definition at line 6749 of file z3py.py.

6749 def cube(self, vars = None):
6750 """Get set of cubes
6751 The method takes an optional set of variables that restrict which
6752 variables may be used as a starting point for cubing.
6753 If vars is not None, then the first case split is based on a variable in
6754 this set.
6755 """
6756 self.cube_vs = AstVector(None, self.ctx)
6757 if vars is not None:
6758 for v in vars:
6759 self.cube_vs.push(v)
6760 while True:
6761 lvl = self.backtrack_level
6762 self.backtrack_level = 4000000000
6763 r = AstVector(Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
6764 if (len(r) == 1 and is_false(r[0])):
6765 return
6766 yield r
6767 if (len(r) == 0):
6768 return
6769
def is_false(a)
Definition: z3py.py:1456
Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level)
extract a next cube for a solver. The last cube is the constant true or false. The number of (non-con...

◆ cube_vars()

def cube_vars (   self)
Access the set of variables that were touched by the most recently generated cube.
This set of variables can be used as a starting point for additional cubes.
The idea is that variables that appear in clauses that are reduced by the most recent
cube are likely more useful to cube on.

Definition at line 6770 of file z3py.py.

6770 def cube_vars(self):
6771 """Access the set of variables that were touched by the most recently generated cube.
6772 This set of variables can be used as a starting point for additional cubes.
6773 The idea is that variables that appear in clauses that are reduced by the most recent
6774 cube are likely more useful to cube on."""
6775 return self.cube_vs
6776

◆ dimacs()

def dimacs (   self)
Return a textual representation of the solver in DIMACS format.

Definition at line 6891 of file z3py.py.

6891 def dimacs(self):
6892 """Return a textual representation of the solver in DIMACS format."""
6893 return Z3_solver_to_dimacs_string(self.ctx.ref(), self.solver)
6894
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s)
Convert a solver into a DIMACS formatted string.

◆ from_file()

def from_file (   self,
  filename 
)
Parse assertions from a file

Definition at line 6741 of file z3py.py.

6741 def from_file(self, filename):
6742 """Parse assertions from a file"""
6743 Z3_solver_from_file(self.ctx.ref(), self.solver, filename)
6744
void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a file.

◆ from_string()

def from_string (   self,
  s 
)
Parse assertions from a string

Definition at line 6745 of file z3py.py.

6745 def from_string(self, s):
6746 """Parse assertions from a string"""
6747 Z3_solver_from_string(self.ctx.ref(), self.solver, s)
6748
void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a string.

◆ help()

def help (   self)
Display a string describing all available options.

Definition at line 6849 of file z3py.py.

6849 def help(self):
6850 """Display a string describing all available options."""
6851 print(Z3_solver_get_help(self.ctx.ref(), self.solver))
6852
Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s)
Return a string describing all solver available parameters.

◆ import_model_converter()

def import_model_converter (   self,
  other 
)
Import model converter from other into the current solver

Definition at line 6677 of file z3py.py.

6677 def import_model_converter(self, other):
6678 """Import model converter from other into the current solver"""
6679 Z3_solver_import_model_converter(self.ctx.ref(), other.solver, self.solver)
6680
void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst)
Ad-hoc method for importing model conversion from solver.

◆ insert()

def insert (   self,
args 
)
Assert constraints into the solver.

>>> x = Int('x')
>>> s = Solver()
>>> s.insert(x > 0, x < 2)
>>> s
[x > 0, x < 2]

Definition at line 6589 of file z3py.py.

6589 def insert(self, *args):
6590 """Assert constraints into the solver.
6591
6592 >>> x = Int('x')
6593 >>> s = Solver()
6594 >>> s.insert(x > 0, x < 2)
6595 >>> s
6596 [x > 0, x < 2]
6597 """
6598 self.assert_exprs(*args)
6599

◆ model()

def model (   self)
Return a model for the last `check()`.

This function raises an exception if
a model is not available (e.g., last `check()` returned unsat).

>>> s = Solver()
>>> a = Int('a')
>>> s.add(a + 2 == 0)
>>> s.check()
sat
>>> s.model()
[a = -2]

Definition at line 6658 of file z3py.py.

6658 def model(self):
6659 """Return a model for the last `check()`.
6660
6661 This function raises an exception if
6662 a model is not available (e.g., last `check()` returned unsat).
6663
6664 >>> s = Solver()
6665 >>> a = Int('a')
6666 >>> s.add(a + 2 == 0)
6667 >>> s.check()
6668 sat
6669 >>> s.model()
6670 [a = -2]
6671 """
6672 try:
6673 return ModelRef(Z3_solver_get_model(self.ctx.ref(), self.solver), self.ctx)
6674 except Z3Exception:
6675 raise Z3Exception("model is not available")
6676
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.

Referenced by ModelRef.__del__(), ModelRef.__getitem__(), ModelRef.__len__(), ModelRef.decls(), ModelRef.eval(), ModelRef.get_interp(), ModelRef.get_sort(), ModelRef.get_universe(), ModelRef.num_sorts(), ModelRef.sexpr(), FuncInterp.translate(), and ModelRef.translate().

◆ non_units()

def non_units (   self)
Return an AST vector containing all atomic formulas in solver state that are not units.

Definition at line 6800 of file z3py.py.

6800 def non_units(self):
6801 """Return an AST vector containing all atomic formulas in solver state that are not units.
6802 """
6803 return AstVector(Z3_solver_get_non_units(self.ctx.ref(), self.solver), self.ctx)
6804
Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s)
Return the set of non units in the solver state.

◆ num_scopes()

def num_scopes (   self)
Return the current number of backtracking points.

>>> s = Solver()
>>> s.num_scopes()
0L
>>> s.push()
>>> s.num_scopes()
1L
>>> s.push()
>>> s.num_scopes()
2L
>>> s.pop()
>>> s.num_scopes()
1L

Definition at line 6512 of file z3py.py.

6512 def num_scopes(self):
6513 """Return the current number of backtracking points.
6514
6515 >>> s = Solver()
6516 >>> s.num_scopes()
6517 0L
6518 >>> s.push()
6519 >>> s.num_scopes()
6520 1L
6521 >>> s.push()
6522 >>> s.num_scopes()
6523 2L
6524 >>> s.pop()
6525 >>> s.num_scopes()
6526 1L
6527 """
6528 return Z3_solver_get_num_scopes(self.ctx.ref(), self.solver)
6529
unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.

◆ param_descrs()

def param_descrs (   self)
Return the parameter description set.

Definition at line 6853 of file z3py.py.

6853 def param_descrs(self):
6854 """Return the parameter description set."""
6855 return ParamDescrsRef(Z3_solver_get_param_descrs(self.ctx.ref(), self.solver), self.ctx)
6856
Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s)
Return the parameter description set for the given solver object.

◆ pop()

def pop (   self,
  num = 1 
)
Backtrack \c num backtracking points.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]

Definition at line 6490 of file z3py.py.

6490 def pop(self, num=1):
6491 """Backtrack \c num backtracking points.
6492
6493 >>> x = Int('x')
6494 >>> s = Solver()
6495 >>> s.add(x > 0)
6496 >>> s
6497 [x > 0]
6498 >>> s.push()
6499 >>> s.add(x < 1)
6500 >>> s
6501 [x > 0, x < 1]
6502 >>> s.check()
6503 unsat
6504 >>> s.pop()
6505 >>> s.check()
6506 sat
6507 >>> s
6508 [x > 0]
6509 """
6510 Z3_solver_pop(self.ctx.ref(), self.solver, num)
6511
void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.

◆ proof()

def proof (   self)
Return a proof for the last `check()`. Proof construction must be enabled.

Definition at line 6777 of file z3py.py.

6777 def proof(self):
6778 """Return a proof for the last `check()`. Proof construction must be enabled."""
6779 return _to_expr_ref(Z3_solver_get_proof(self.ctx.ref(), self.solver), self.ctx)
6780
Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s)
Retrieve the proof for the last Z3_solver_check or Z3_solver_check_assumptions.

◆ push()

def push (   self)
Create a backtracking point.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]

Definition at line 6468 of file z3py.py.

6468 def push(self):
6469 """Create a backtracking point.
6470
6471 >>> x = Int('x')
6472 >>> s = Solver()
6473 >>> s.add(x > 0)
6474 >>> s
6475 [x > 0]
6476 >>> s.push()
6477 >>> s.add(x < 1)
6478 >>> s
6479 [x > 0, x < 1]
6480 >>> s.check()
6481 unsat
6482 >>> s.pop()
6483 >>> s.check()
6484 sat
6485 >>> s
6486 [x > 0]
6487 """
6488 Z3_solver_push(self.ctx.ref(), self.solver)
6489
void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.

◆ reason_unknown()

def reason_unknown (   self)
Return a string describing why the last `check()` returned `unknown`.

>>> x = Int('x')
>>> s = SimpleSolver()
>>> s.add(2**x == 4)
>>> s.check()
unknown
>>> s.reason_unknown()
'(incomplete (theory arithmetic))'

Definition at line 6836 of file z3py.py.

6836 def reason_unknown(self):
6837 """Return a string describing why the last `check()` returned `unknown`.
6838
6839 >>> x = Int('x')
6840 >>> s = SimpleSolver()
6841 >>> s.add(2**x == 4)
6842 >>> s.check()
6843 unknown
6844 >>> s.reason_unknown()
6845 '(incomplete (theory arithmetic))'
6846 """
6847 return Z3_solver_get_reason_unknown(self.ctx.ref(), self.solver)
6848
def SimpleSolver(ctx=None, logFile=None)
Definition: z3py.py:6931
Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s)
Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for the commands Z3_solver_ch...

◆ reset()

def reset (   self)
Remove all asserted constraints and backtracking points created using `push()`.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.reset()
>>> s
[]

Definition at line 6530 of file z3py.py.

6530 def reset(self):
6531 """Remove all asserted constraints and backtracking points created using `push()`.
6532
6533 >>> x = Int('x')
6534 >>> s = Solver()
6535 >>> s.add(x > 0)
6536 >>> s
6537 [x > 0]
6538 >>> s.reset()
6539 >>> s
6540 []
6541 """
6542 Z3_solver_reset(self.ctx.ref(), self.solver)
6543
void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.

◆ set()

def set (   self,
args,
**  keys 
)
Set a configuration option. The method `help()` return a string containing all available options.

>>> s = Solver()
>>> # The option MBQI can be set using three different approaches.
>>> s.set(mbqi=True)
>>> s.set('MBQI', True)
>>> s.set(':mbqi', True)

Definition at line 6456 of file z3py.py.

6456 def set(self, *args, **keys):
6457 """Set a configuration option. The method `help()` return a string containing all available options.
6458
6459 >>> s = Solver()
6460 >>> # The option MBQI can be set using three different approaches.
6461 >>> s.set(mbqi=True)
6462 >>> s.set('MBQI', True)
6463 >>> s.set(':mbqi', True)
6464 """
6465 p = args2params(args, keys, self.ctx)
6466 Z3_solver_set_params(self.ctx.ref(), self.solver, p.params)
6467
def args2params(arguments, keywords, ctx=None)
Definition: z3py.py:5070
void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.

◆ sexpr()

def sexpr (   self)
Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> r = s.sexpr()

Definition at line 6880 of file z3py.py.

6880 def sexpr(self):
6881 """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
6882
6883 >>> x = Int('x')
6884 >>> s = Solver()
6885 >>> s.add(x > 0)
6886 >>> s.add(x < 2)
6887 >>> r = s.sexpr()
6888 """
6889 return Z3_solver_to_string(self.ctx.ref(), self.solver)
6890
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.

Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().

◆ statistics()

def statistics (   self)
Return statistics for the last `check()`.

>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat
>>> st = s.statistics()
>>> st.get_key_value('final checks')
1
>>> len(st) > 0
True
>>> st[0] != 0
True

Definition at line 6818 of file z3py.py.

6818 def statistics(self):
6819 """Return statistics for the last `check()`.
6820
6821 >>> s = SimpleSolver()
6822 >>> x = Int('x')
6823 >>> s.add(x > 0)
6824 >>> s.check()
6825 sat
6826 >>> st = s.statistics()
6827 >>> st.get_key_value('final checks')
6828 1
6829 >>> len(st) > 0
6830 True
6831 >>> st[0] != 0
6832 True
6833 """
6834 return Statistics(Z3_solver_get_statistics(self.ctx.ref(), self.solver), self.ctx)
6835
Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s)
Return statistics for the given solver.

◆ to_smt2()

def to_smt2 (   self)
return SMTLIB2 formatted benchmark for solver's assertions

Definition at line 6895 of file z3py.py.

6895 def to_smt2(self):
6896 """return SMTLIB2 formatted benchmark for solver's assertions"""
6897 es = self.assertions()
6898 sz = len(es)
6899 sz1 = sz
6900 if sz1 > 0:
6901 sz1 -= 1
6902 v = (Ast * sz1)()
6903 for i in range(sz1):
6904 v[i] = es[i].as_ast()
6905 if sz > 0:
6906 e = es[sz1].as_ast()
6907 else:
6908 e = BoolVal(True, self.ctx).as_ast()
6909 return Z3_benchmark_to_smtlib_string(self.ctx.ref(), "benchmark generated from python API", "", "unknown", "", sz1, v, e)
6910
def BoolVal(val, ctx=None)
Definition: z3py.py:1550
Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)
Convert the given benchmark into SMT-LIB formatted string.

◆ trail()

def trail (   self)
Return trail of the solver state after a check() call.

Definition at line 6813 of file z3py.py.

6813 def trail(self):
6814 """Return trail of the solver state after a check() call.
6815 """
6816 return AstVector(Z3_solver_get_trail(self.ctx.ref(), self.solver), self.ctx)
6817
Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s)
Return the trail modulo model conversion, in order of decision level The decision level can be retrie...

Referenced by Solver.trail_levels().

◆ trail_levels()

def trail_levels (   self)
Return trail and decision levels of the solver state after a check() call.

Definition at line 6805 of file z3py.py.

6805 def trail_levels(self):
6806 """Return trail and decision levels of the solver state after a check() call.
6807 """
6808 trail = self.trail()
6809 levels = (ctypes.c_uint * len(trail))()
6810 Z3_solver_get_levels(self.ctx.ref(), self.solver, trail.vector, len(trail), levels)
6811 return trail, levels
6812
void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[])
retrieve the decision depth of Boolean literals (variables or their negations). Assumes a check-sat c...

◆ translate()

def translate (   self,
  target 
)
Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.

>>> c1 = Context()
>>> c2 = Context()
>>> s1 = Solver(ctx=c1)
>>> s2 = s1.translate(c2)

Definition at line 6861 of file z3py.py.

6861 def translate(self, target):
6862 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6863
6864 >>> c1 = Context()
6865 >>> c2 = Context()
6866 >>> s1 = Solver(ctx=c1)
6867 >>> s2 = s1.translate(c2)
6868 """
6869 if z3_debug():
6870 _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
6871 solver = Z3_solver_translate(self.ctx.ref(), self.solver, target.ref())
6872 return Solver(solver, target)
6873
def z3_debug()
Definition: z3py.py:56
Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target)
Copy a solver s from the context source to the context target.

Referenced by AstRef.__copy__(), Goal.__copy__(), AstVector.__copy__(), FuncInterp.__copy__(), ModelRef.__copy__(), Solver.__copy__(), Goal.__deepcopy__(), AstVector.__deepcopy__(), FuncInterp.__deepcopy__(), ModelRef.__deepcopy__(), and Solver.__deepcopy__().

◆ units()

def units (   self)
Return an AST vector containing all currently inferred units.

Definition at line 6795 of file z3py.py.

6795 def units(self):
6796 """Return an AST vector containing all currently inferred units.
6797 """
6798 return AstVector(Z3_solver_get_units(self.ctx.ref(), self.solver), self.ctx)
6799
Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s)
Return the set of units modulo model conversion.

◆ unsat_core()

def unsat_core (   self)
Return a subset (as an AST vector) of the assumptions provided to the last check().

These are the assumptions Z3 used in the unsatisfiability proof.
Assumptions are available in Z3. They are used to extract unsatisfiable cores.
They may be also used to "retract" assumptions. Note that, assumptions are not really
"soft constraints", but they can be used to implement them.

>>> p1, p2, p3 = Bools('p1 p2 p3')
>>> x, y       = Ints('x y')
>>> s          = Solver()
>>> s.add(Implies(p1, x > 0))
>>> s.add(Implies(p2, y > x))
>>> s.add(Implies(p2, y < 1))
>>> s.add(Implies(p3, y > -3))
>>> s.check(p1, p2, p3)
unsat
>>> core = s.unsat_core()
>>> len(core)
2
>>> p1 in core
True
>>> p2 in core
True
>>> p3 in core
False
>>> # "Retracting" p2
>>> s.check(p1, p3)
sat

Definition at line 6681 of file z3py.py.

6681 def unsat_core(self):
6682 """Return a subset (as an AST vector) of the assumptions provided to the last check().
6683
6684 These are the assumptions Z3 used in the unsatisfiability proof.
6685 Assumptions are available in Z3. They are used to extract unsatisfiable cores.
6686 They may be also used to "retract" assumptions. Note that, assumptions are not really
6687 "soft constraints", but they can be used to implement them.
6688
6689 >>> p1, p2, p3 = Bools('p1 p2 p3')
6690 >>> x, y = Ints('x y')
6691 >>> s = Solver()
6692 >>> s.add(Implies(p1, x > 0))
6693 >>> s.add(Implies(p2, y > x))
6694 >>> s.add(Implies(p2, y < 1))
6695 >>> s.add(Implies(p3, y > -3))
6696 >>> s.check(p1, p2, p3)
6697 unsat
6698 >>> core = s.unsat_core()
6699 >>> len(core)
6700 2
6701 >>> p1 in core
6702 True
6703 >>> p2 in core
6704 True
6705 >>> p3 in core
6706 False
6707 >>> # "Retracting" p2
6708 >>> s.check(p1, p3)
6709 sat
6710 """
6711 return AstVector(Z3_solver_get_unsat_core(self.ctx.ref(), self.solver), self.ctx)
6712
def Ints(names, ctx=None)
Definition: z3py.py:3022
Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s)
Retrieve the unsat core for the last Z3_solver_check_assumptions The unsat core is a subset of the as...

Field Documentation

◆ backtrack_level

backtrack_level

Definition at line 6442 of file z3py.py.

◆ ctx

ctx

Definition at line 6441 of file z3py.py.

Referenced by ArithRef.__add__(), BitVecRef.__add__(), FPRef.__add__(), BitVecRef.__and__(), FuncDeclRef.__call__(), Probe.__call__(), AstMap.__contains__(), AstRef.__copy__(), Goal.__copy__(), AstVector.__copy__(), FuncInterp.__copy__(), ModelRef.__copy__(), Solver.__copy__(), AstRef.__deepcopy__(), Datatype.__deepcopy__(), ParamsRef.__deepcopy__(), ParamDescrsRef.__deepcopy__(), Goal.__deepcopy__(), AstVector.__deepcopy__(), AstMap.__deepcopy__(), FuncEntry.__deepcopy__(), FuncInterp.__deepcopy__(), ModelRef.__deepcopy__(), Statistics.__deepcopy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), Context.__del__(), AstRef.__del__(), ScopedConstructor.__del__(), ScopedConstructorList.__del__(), ParamsRef.__del__(), ParamDescrsRef.__del__(), Goal.__del__(), AstVector.__del__(), AstMap.__del__(), FuncEntry.__del__(), FuncInterp.__del__(), ModelRef.__del__(), Statistics.__del__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Tactic.__del__(), Probe.__del__(), ArithRef.__div__(), BitVecRef.__div__(), FPRef.__div__(), ExprRef.__eq__(), Probe.__eq__(), ArithRef.__ge__(), BitVecRef.__ge__(), Probe.__ge__(), FPRef.__ge__(), SeqRef.__ge__(), QuantifierRef.__getitem__(), ArrayRef.__getitem__(), AstVector.__getitem__(), SeqRef.__getitem__(), ModelRef.__getitem__(), Statistics.__getitem__(), ApplyResult.__getitem__(), AstMap.__getitem__(), ArithRef.__gt__(), BitVecRef.__gt__(), Probe.__gt__(), FPRef.__gt__(), SeqRef.__gt__(), BitVecRef.__invert__(), ArithRef.__le__(), BitVecRef.__le__(), Probe.__le__(), FPRef.__le__(), SeqRef.__le__(), AstVector.__len__(), AstMap.__len__(), ModelRef.__len__(), Statistics.__len__(), ApplyResult.__len__(), BitVecRef.__lshift__(), ArithRef.__lt__(), BitVecRef.__lt__(), Probe.__lt__(), FPRef.__lt__(), SeqRef.__lt__(), ArithRef.__mod__(), BitVecRef.__mod__(), ArithRef.__mul__(), BitVecRef.__mul__(), FPRef.__mul__(), ExprRef.__ne__(), Probe.__ne__(), ArithRef.__neg__(), BitVecRef.__neg__(), BitVecRef.__or__(), ArithRef.__pow__(), ArithRef.__radd__(), BitVecRef.__radd__(), FPRef.__radd__(), BitVecRef.__rand__(), ArithRef.__rdiv__(), BitVecRef.__rdiv__(), FPRef.__rdiv__(), ParamsRef.__repr__(), ParamDescrsRef.__repr__(), AstMap.__repr__(), Statistics.__repr__(), BitVecRef.__rlshift__(), ArithRef.__rmod__(), BitVecRef.__rmod__(), ArithRef.__rmul__(), BitVecRef.__rmul__(), FPRef.__rmul__(), BitVecRef.__ror__(), ArithRef.__rpow__(), BitVecRef.__rrshift__(), BitVecRef.__rshift__(), ArithRef.__rsub__(), BitVecRef.__rsub__(), FPRef.__rsub__(), BitVecRef.__rxor__(), AstVector.__setitem__(), AstMap.__setitem__(), ArithRef.__sub__(), BitVecRef.__sub__(), FPRef.__sub__(), BitVecRef.__xor__(), DatatypeSortRef.accessor(), Fixedpoint.add_cover(), Fixedpoint.add_rule(), Optimize.add_soft(), Tactic.apply(), AlgebraicNumRef.approx(), ExprRef.arg(), FuncEntry.arg_value(), FuncInterp.arity(), Goal.as_expr(), ApplyResult.as_expr(), FPNumRef.as_string(), Solver.assert_and_track(), Optimize.assert_and_track(), Goal.assert_exprs(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), SeqRef.at(), SeqSortRef.basis(), ReSortRef.basis(), QuantifierRef.body(), BoolSortRef.cast(), Solver.check(), Optimize.check(), Solver.consequences(), DatatypeSortRef.constructor(), Goal.convert_model(), AstRef.ctx_ref(), ExprRef.decl(), ModelRef.decls(), ArrayRef.default(), RatNumRef.denominator(), Goal.depth(), Goal.dimacs(), Solver.dimacs(), ArraySortRef.domain(), FuncDeclRef.domain(), FuncInterp.else_value(), FuncInterp.entry(), AstMap.erase(), ModelRef.eval(), FPNumRef.exponent(), FPNumRef.exponent_as_bv(), FPNumRef.exponent_as_long(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), Goal.get(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), ParamDescrsRef.get_documentation(), Fixedpoint.get_ground_sat_answer(), ModelRef.get_interp(), Statistics.get_key_value(), ParamDescrsRef.get_kind(), ParamDescrsRef.get_name(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), ModelRef.get_sort(), ModelRef.get_universe(), Solver.help(), Fixedpoint.help(), Optimize.help(), Tactic.help(), Solver.import_model_converter(), Goal.inconsistent(), FPNumRef.isInf(), FPNumRef.isNaN(), FPNumRef.isNegative(), FPNumRef.isNormal(), FPNumRef.isPositive(), FPNumRef.isSubnormal(), FPNumRef.isZero(), AstMap.keys(), Statistics.keys(), SortRef.kind(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), SortRef.name(), FuncDeclRef.name(), QuantifierRef.no_pattern(), Solver.non_units(), FuncEntry.num_args(), FuncInterp.num_entries(), Solver.num_scopes(), ModelRef.num_sorts(), RatNumRef.numerator(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Tactic.param_descrs(), FuncDeclRef.params(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), QuantifierRef.pattern(), Optimize.pop(), Solver.pop(), Goal.prec(), Solver.proof(), Solver.push(), Optimize.push(), AstVector.push(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), FuncDeclRef.range(), ArraySortRef.range(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), DatatypeSortRef.recognizer(), Context.ref(), Fixedpoint.register_relation(), AstMap.reset(), Solver.reset(), AstVector.resize(), Solver.set(), Fixedpoint.set(), Optimize.set(), ParamsRef.set(), Fixedpoint.set_predicate_representation(), Goal.sexpr(), AstVector.sexpr(), ModelRef.sexpr(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), FPNumRef.sign(), FPNumRef.sign_as_bv(), FPNumRef.significand(), FPNumRef.significand_as_bv(), FPNumRef.significand_as_long(), ParamDescrsRef.size(), Goal.size(), Tactic.solver(), ExprRef.sort(), BoolRef.sort(), QuantifierRef.sort(), ArithRef.sort(), BitVecRef.sort(), ArrayRef.sort(), DatatypeRef.sort(), FiniteDomainRef.sort(), FPRef.sort(), SeqRef.sort(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), AstVector.translate(), FuncInterp.translate(), AstRef.translate(), Goal.translate(), ModelRef.translate(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), Fixedpoint.update_rule(), ParamsRef.validate(), FuncEntry.value(), QuantifierRef.var_name(), and QuantifierRef.var_sort().

◆ cube_vs

cube_vs

Definition at line 6756 of file z3py.py.

Referenced by Solver.cube_vars().

◆ solver

solver