Z3
Data Structures | Typedefs | Enumerations | Functions
z3 Namespace Reference

Z3 C++ namespace. More...

Data Structures

class  apply_result
 
class  array
 
class  ast
 
class  ast_vector_tpl
 
class  cast_ast
 
class  cast_ast< ast >
 
class  cast_ast< expr >
 
class  cast_ast< func_decl >
 
class  cast_ast< sort >
 
class  config
 Z3 global configuration object. More...
 
class  context
 A Context manages all other Z3 objects, global configuration options, etc. More...
 
class  exception
 Exception used to sign API usage errors. More...
 
class  expr
 A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort. More...
 
class  fixedpoint
 
class  func_decl
 Function declaration (aka function definition). It is the signature of interpreted and uninterpreted functions in Z3. The basic building block in Z3 is the function application. More...
 
class  func_entry
 
class  func_interp
 
class  goal
 
class  model
 
class  object
 
class  optimize
 
class  param_descrs
 
class  params
 
class  probe
 
class  solver
 
class  sort
 A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort. More...
 
class  stats
 
class  symbol
 
class  tactic
 

Typedefs

typedef ast_vector_tpl< astast_vector
 
typedef ast_vector_tpl< exprexpr_vector
 
typedef ast_vector_tpl< sortsort_vector
 
typedef ast_vector_tpl< func_declfunc_decl_vector
 

Enumerations

enum  check_result { unsat , sat , unknown }
 
enum  rounding_mode {
  RNA , RNE , RTP , RTN ,
  RTZ
}
 

Functions

void set_param (char const *param, char const *value)
 
void set_param (char const *param, bool value)
 
void set_param (char const *param, int value)
 
void reset_params ()
 
std::ostream & operator<< (std::ostream &out, exception const &e)
 
check_result to_check_result (Z3_lbool l)
 
void check_context (object const &a, object const &b)
 
std::ostream & operator<< (std::ostream &out, symbol const &s)
 
std::ostream & operator<< (std::ostream &out, param_descrs const &d)
 
std::ostream & operator<< (std::ostream &out, params const &p)
 
std::ostream & operator<< (std::ostream &out, ast const &n)
 
bool eq (ast const &a, ast const &b)
 
expr select (expr const &a, expr const &i)
 forward declarations More...
 
expr select (expr const &a, expr_vector const &i)
 
expr implies (expr const &a, expr const &b)
 
expr implies (expr const &a, bool b)
 
expr implies (bool a, expr const &b)
 
expr pw (expr const &a, expr const &b)
 
expr pw (expr const &a, int b)
 
expr pw (int a, expr const &b)
 
expr mod (expr const &a, expr const &b)
 
expr mod (expr const &a, int b)
 
expr mod (int a, expr const &b)
 
expr operator% (expr const &a, expr const &b)
 
expr operator% (expr const &a, int b)
 
expr operator% (int a, expr const &b)
 
expr rem (expr const &a, expr const &b)
 
expr rem (expr const &a, int b)
 
expr rem (int a, expr const &b)
 
expr operator! (expr const &a)
 
expr is_int (expr const &e)
 
expr operator&& (expr const &a, expr const &b)
 
expr operator&& (expr const &a, bool b)
 
expr operator&& (bool a, expr const &b)
 
expr operator|| (expr const &a, expr const &b)
 
expr operator|| (expr const &a, bool b)
 
expr operator|| (bool a, expr const &b)
 
expr operator== (expr const &a, expr const &b)
 
expr operator== (expr const &a, int b)
 
expr operator== (int a, expr const &b)
 
expr operator!= (expr const &a, expr const &b)
 
expr operator!= (expr const &a, int b)
 
expr operator!= (int a, expr const &b)
 
expr operator+ (expr const &a, expr const &b)
 
expr operator+ (expr const &a, int b)
 
expr operator+ (int a, expr const &b)
 
expr operator* (expr const &a, expr const &b)
 
expr operator* (expr const &a, int b)
 
expr operator* (int a, expr const &b)
 
expr operator>= (expr const &a, expr const &b)
 
expr operator/ (expr const &a, expr const &b)
 
expr operator/ (expr const &a, int b)
 
expr operator/ (int a, expr const &b)
 
expr operator- (expr const &a)
 
expr operator- (expr const &a, expr const &b)
 
expr operator- (expr const &a, int b)
 
expr operator- (int a, expr const &b)
 
expr operator<= (expr const &a, expr const &b)
 
expr operator<= (expr const &a, int b)
 
expr operator<= (int a, expr const &b)
 
expr operator>= (expr const &a, int b)
 
expr operator>= (int a, expr const &b)
 
expr operator< (expr const &a, expr const &b)
 
expr operator< (expr const &a, int b)
 
expr operator< (int a, expr const &b)
 
expr operator> (expr const &a, expr const &b)
 
expr operator> (expr const &a, int b)
 
expr operator> (int a, expr const &b)
 
expr operator& (expr const &a, expr const &b)
 
expr operator& (expr const &a, int b)
 
expr operator& (int a, expr const &b)
 
expr operator^ (expr const &a, expr const &b)
 
expr operator^ (expr const &a, int b)
 
expr operator^ (int a, expr const &b)
 
expr operator| (expr const &a, expr const &b)
 
expr operator| (expr const &a, int b)
 
expr operator| (int a, expr const &b)
 
expr nand (expr const &a, expr const &b)
 
expr nor (expr const &a, expr const &b)
 
expr xnor (expr const &a, expr const &b)
 
expr min (expr const &a, expr const &b)
 
expr max (expr const &a, expr const &b)
 
expr abs (expr const &a)
 
expr sqrt (expr const &a, expr const &rm)
 
expr operator~ (expr const &a)
 
expr fma (expr const &a, expr const &b, expr const &c, expr const &rm)
 
expr ite (expr const &c, expr const &t, expr const &e)
 Create the if-then-else expression ite(c, t, e) More...
 
expr to_expr (context &c, Z3_ast a)
 Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the whole C API with the C++ layer defined in this file. More...
 
sort to_sort (context &c, Z3_sort s)
 
func_decl to_func_decl (context &c, Z3_func_decl f)
 
expr sle (expr const &a, expr const &b)
 signed less than or equal to operator for bitvectors. More...
 
expr sle (expr const &a, int b)
 
expr sle (int a, expr const &b)
 
expr slt (expr const &a, expr const &b)
 signed less than operator for bitvectors. More...
 
expr slt (expr const &a, int b)
 
expr slt (int a, expr const &b)
 
expr ule (expr const &a, expr const &b)
 unsigned less than or equal to operator for bitvectors. More...
 
expr ule (expr const &a, int b)
 
expr ule (int a, expr const &b)
 
expr ult (expr const &a, expr const &b)
 unsigned less than operator for bitvectors. More...
 
expr ult (expr const &a, int b)
 
expr ult (int a, expr const &b)
 
expr uge (expr const &a, expr const &b)
 unsigned greater than or equal to operator for bitvectors. More...
 
expr uge (expr const &a, int b)
 
expr uge (int a, expr const &b)
 
expr ugt (expr const &a, expr const &b)
 unsigned greater than operator for bitvectors. More...
 
expr ugt (expr const &a, int b)
 
expr ugt (int a, expr const &b)
 
expr udiv (expr const &a, expr const &b)
 unsigned division operator for bitvectors. More...
 
expr udiv (expr const &a, int b)
 
expr udiv (int a, expr const &b)
 
expr srem (expr const &a, expr const &b)
 signed remainder operator for bitvectors More...
 
expr srem (expr const &a, int b)
 
expr srem (int a, expr const &b)
 
expr smod (expr const &a, expr const &b)
 signed modulus operator for bitvectors More...
 
expr smod (expr const &a, int b)
 
expr smod (int a, expr const &b)
 
expr urem (expr const &a, expr const &b)
 unsigned reminder operator for bitvectors More...
 
expr urem (expr const &a, int b)
 
expr urem (int a, expr const &b)
 
expr shl (expr const &a, expr const &b)
 shift left operator for bitvectors More...
 
expr shl (expr const &a, int b)
 
expr shl (int a, expr const &b)
 
expr lshr (expr const &a, expr const &b)
 logic shift right operator for bitvectors More...
 
expr lshr (expr const &a, int b)
 
expr lshr (int a, expr const &b)
 
expr ashr (expr const &a, expr const &b)
 arithmetic shift right operator for bitvectors More...
 
expr ashr (expr const &a, int b)
 
expr ashr (int a, expr const &b)
 
expr zext (expr const &a, unsigned i)
 Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector. More...
 
expr bv2int (expr const &a, bool is_signed)
 bit-vector and integer conversions. More...
 
expr int2bv (unsigned n, expr const &a)
 
expr bvadd_no_overflow (expr const &a, expr const &b, bool is_signed)
 bit-vector overflow/underflow checks More...
 
expr bvadd_no_underflow (expr const &a, expr const &b)
 
expr bvsub_no_overflow (expr const &a, expr const &b)
 
expr bvsub_no_underflow (expr const &a, expr const &b, bool is_signed)
 
expr bvsdiv_no_overflow (expr const &a, expr const &b)
 
expr bvneg_no_overflow (expr const &a)
 
expr bvmul_no_overflow (expr const &a, expr const &b, bool is_signed)
 
expr bvmul_no_underflow (expr const &a, expr const &b)
 
expr sext (expr const &a, unsigned i)
 Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector. More...
 
func_decl linear_order (sort const &a, unsigned index)
 
func_decl partial_order (sort const &a, unsigned index)
 
func_decl piecewise_linear_order (sort const &a, unsigned index)
 
func_decl tree_order (sort const &a, unsigned index)
 
expr forall (expr const &x, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr forall (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr forall (expr_vector const &xs, expr const &b)
 
expr exists (expr const &x, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr exists (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr exists (expr_vector const &xs, expr const &b)
 
expr lambda (expr const &x, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &x3, expr const &b)
 
expr lambda (expr const &x1, expr const &x2, expr const &x3, expr const &x4, expr const &b)
 
expr lambda (expr_vector const &xs, expr const &b)
 
expr pble (expr_vector const &es, int const *coeffs, int bound)
 
expr pbge (expr_vector const &es, int const *coeffs, int bound)
 
expr pbeq (expr_vector const &es, int const *coeffs, int bound)
 
expr atmost (expr_vector const &es, unsigned bound)
 
expr atleast (expr_vector const &es, unsigned bound)
 
expr sum (expr_vector const &args)
 
expr distinct (expr_vector const &args)
 
expr concat (expr const &a, expr const &b)
 
expr concat (expr_vector const &args)
 
expr mk_or (expr_vector const &args)
 
expr mk_and (expr_vector const &args)
 
std::ostream & operator<< (std::ostream &out, model const &m)
 
std::ostream & operator<< (std::ostream &out, stats const &s)
 
std::ostream & operator<< (std::ostream &out, check_result r)
 
std::ostream & operator<< (std::ostream &out, solver const &s)
 
std::ostream & operator<< (std::ostream &out, goal const &g)
 
std::ostream & operator<< (std::ostream &out, apply_result const &r)
 
tactic operator& (tactic const &t1, tactic const &t2)
 
tactic operator| (tactic const &t1, tactic const &t2)
 
tactic repeat (tactic const &t, unsigned max=UINT_MAX)
 
tactic with (tactic const &t, params const &p)
 
tactic try_for (tactic const &t, unsigned ms)
 
tactic par_or (unsigned n, tactic const *tactics)
 
tactic par_and_then (tactic const &t1, tactic const &t2)
 
probe operator<= (probe const &p1, probe const &p2)
 
probe operator<= (probe const &p1, double p2)
 
probe operator<= (double p1, probe const &p2)
 
probe operator>= (probe const &p1, probe const &p2)
 
probe operator>= (probe const &p1, double p2)
 
probe operator>= (double p1, probe const &p2)
 
probe operator< (probe const &p1, probe const &p2)
 
probe operator< (probe const &p1, double p2)
 
probe operator< (double p1, probe const &p2)
 
probe operator> (probe const &p1, probe const &p2)
 
probe operator> (probe const &p1, double p2)
 
probe operator> (double p1, probe const &p2)
 
probe operator== (probe const &p1, probe const &p2)
 
probe operator== (probe const &p1, double p2)
 
probe operator== (double p1, probe const &p2)
 
probe operator&& (probe const &p1, probe const &p2)
 
probe operator|| (probe const &p1, probe const &p2)
 
probe operator! (probe const &p)
 
std::ostream & operator<< (std::ostream &out, optimize const &s)
 
std::ostream & operator<< (std::ostream &out, fixedpoint const &f)
 
tactic fail_if (probe const &p)
 
tactic when (probe const &p, tactic const &t)
 
tactic cond (probe const &p, tactic const &t1, tactic const &t2)
 
expr to_real (expr const &a)
 
func_decl function (symbol const &name, unsigned arity, sort const *domain, sort const &range)
 
func_decl function (char const *name, unsigned arity, sort const *domain, sort const &range)
 
func_decl function (char const *name, sort const &domain, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &d4, sort const &range)
 
func_decl function (char const *name, sort const &d1, sort const &d2, sort const &d3, sort const &d4, sort const &d5, sort const &range)
 
func_decl function (char const *name, sort_vector const &domain, sort const &range)
 
func_decl function (std::string const &name, sort_vector const &domain, sort const &range)
 
func_decl recfun (symbol const &name, unsigned arity, sort const *domain, sort const &range)
 
func_decl recfun (char const *name, unsigned arity, sort const *domain, sort const &range)
 
func_decl recfun (char const *name, sort const &d1, sort const &range)
 
func_decl recfun (char const *name, sort const &d1, sort const &d2, sort const &range)
 
expr select (expr const &a, int i)
 
expr store (expr const &a, expr const &i, expr const &v)
 
expr store (expr const &a, int i, expr const &v)
 
expr store (expr const &a, expr i, int v)
 
expr store (expr const &a, int i, int v)
 
expr store (expr const &a, expr_vector const &i, expr const &v)
 
expr as_array (func_decl &f)
 
expr const_array (sort const &d, expr const &v)
 
expr empty_set (sort const &s)
 
expr full_set (sort const &s)
 
expr set_add (expr const &s, expr const &e)
 
expr set_del (expr const &s, expr const &e)
 
expr set_union (expr const &a, expr const &b)
 
expr set_intersect (expr const &a, expr const &b)
 
expr set_difference (expr const &a, expr const &b)
 
expr set_complement (expr const &a)
 
expr set_member (expr const &s, expr const &e)
 
expr set_subset (expr const &a, expr const &b)
 
expr empty (sort const &s)
 
expr suffixof (expr const &a, expr const &b)
 
expr prefixof (expr const &a, expr const &b)
 
expr indexof (expr const &s, expr const &substr, expr const &offset)
 
expr last_indexof (expr const &s, expr const &substr)
 
expr to_re (expr const &s)
 
expr in_re (expr const &s, expr const &re)
 
expr plus (expr const &re)
 
expr option (expr const &re)
 
expr star (expr const &re)
 
expr re_empty (sort const &s)
 
expr re_full (sort const &s)
 
expr re_intersect (expr_vector const &args)
 
expr re_complement (expr const &a)
 
expr range (expr const &lo, expr const &hi)
 

Detailed Description

Z3 C++ namespace.

Typedef Documentation

◆ ast_vector

Definition at line 70 of file z3++.h.

◆ expr_vector

Definition at line 71 of file z3++.h.

◆ func_decl_vector

Definition at line 73 of file z3++.h.

◆ sort_vector

Definition at line 72 of file z3++.h.

Enumeration Type Documentation

◆ check_result

Enumerator
unsat 
sat 
unknown 

Definition at line 129 of file z3++.h.

129 {
131 };
@ unknown
Definition: z3++.h:130
@ sat
Definition: z3++.h:130
@ unsat
Definition: z3++.h:130

◆ rounding_mode

Enumerator
RNA 
RNE 
RTP 
RTN 
RTZ 

Definition at line 133 of file z3++.h.

133 {
134 RNA,
135 RNE,
136 RTP,
137 RTN,
138 RTZ
139 };
@ RNE
Definition: z3++.h:135
@ RNA
Definition: z3++.h:134
@ RTZ
Definition: z3++.h:138
@ RTN
Definition: z3++.h:137
@ RTP
Definition: z3++.h:136

Function Documentation

◆ abs()

expr z3::abs ( expr const &  a)
inline

Definition at line 1606 of file z3++.h.

1606 {
1607 Z3_ast r;
1608 if (a.is_int()) {
1609 expr zero = a.ctx().int_val(0);
1610 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
1611 }
1612 else if (a.is_real()) {
1613 expr zero = a.ctx().real_val(0);
1614 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
1615 }
1616 else {
1617 r = Z3_mk_fpa_abs(a.ctx(), a);
1618 }
1619 a.check_error();
1620 return expr(a.ctx(), r);
1621 }
expr real_val(int n, int d)
Definition: z3++.h:3104
expr int_val(int n)
Definition: z3++.h:3098
A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort ...
Definition: z3++.h:667
context & ctx() const
Definition: z3++.h:406
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

◆ as_array()

expr z3::as_array ( func_decl f)
inline

Definition at line 3293 of file z3++.h.

3293 {
3294 Z3_ast r = Z3_mk_as_array(f.ctx(), f);
3295 f.check_error();
3296 return expr(f.ctx(), r);
3297 }
Z3_error_code check_error() const
Definition: z3++.h:407
Z3_ast Z3_API Z3_mk_as_array(Z3_context c, Z3_func_decl f)
Create array with the same interpretation as a function. The array satisfies the property (f x) = (se...

◆ ashr() [1/3]

expr z3::ashr ( expr const &  a,
expr const &  b 
)
inline

arithmetic shift right operator for bitvectors

Definition at line 1760 of file z3++.h.

1760{ return to_expr(a.ctx(), Z3_mk_bvashr(a.ctx(), a, b)); }
expr to_expr(context &c, Z3_ast a)
Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the...
Definition: z3++.h:1658
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.

Referenced by ashr().

◆ ashr() [2/3]

expr z3::ashr ( expr const &  a,
int  b 
)
inline

Definition at line 1761 of file z3++.h.

1761{ return ashr(a, a.ctx().num_val(b, a.get_sort())); }
expr ashr(int a, expr const &b)
Definition: z3++.h:1762

◆ ashr() [3/3]

expr z3::ashr ( int  a,
expr const &  b 
)
inline

Definition at line 1762 of file z3++.h.

1762{ return ashr(b.ctx().num_val(a, b.get_sort()), b); }

◆ atleast()

expr z3::atleast ( expr_vector const &  es,
unsigned  bound 
)
inline

Definition at line 2040 of file z3++.h.

2040 {
2041 assert(es.size() > 0);
2042 context& ctx = es[0].ctx();
2043 array<Z3_ast> _es(es);
2044 Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
2045 ctx.check_error();
2046 return expr(ctx, r);
2047 }
A Context manages all other Z3 objects, global configuration options, etc.
Definition: z3++.h:153
Z3_error_code check_error() const
Auxiliary method used to check for API usage errors.
Definition: z3++.h:178
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ atmost()

expr z3::atmost ( expr_vector const &  es,
unsigned  bound 
)
inline

Definition at line 2032 of file z3++.h.

2032 {
2033 assert(es.size() > 0);
2034 context& ctx = es[0].ctx();
2035 array<Z3_ast> _es(es);
2036 Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
2037 ctx.check_error();
2038 return expr(ctx, r);
2039 }
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ bv2int()

expr z3::bv2int ( expr const &  a,
bool  is_signed 
)
inline

bit-vector and integer conversions.

Definition at line 1772 of file z3++.h.

1772{ Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

◆ bvadd_no_overflow()

expr z3::bvadd_no_overflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
inline

bit-vector overflow/underflow checks

Definition at line 1778 of file z3++.h.

1778 {
1779 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
1780 }
void check_context(object const &a, object const &b)
Definition: z3++.h:410
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

◆ bvadd_no_underflow()

expr z3::bvadd_no_underflow ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1781 of file z3++.h.

1781 {
1782 check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
1783 }
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ bvmul_no_overflow()

expr z3::bvmul_no_overflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
inline

Definition at line 1796 of file z3++.h.

1796 {
1797 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
1798 }
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ bvmul_no_underflow()

expr z3::bvmul_no_underflow ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1799 of file z3++.h.

1799 {
1800 check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
1801 }
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ bvneg_no_overflow()

expr z3::bvneg_no_overflow ( expr const &  a)
inline

Definition at line 1793 of file z3++.h.

1793 {
1794 Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
1795 }
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ bvsdiv_no_overflow()

expr z3::bvsdiv_no_overflow ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1790 of file z3++.h.

1790 {
1791 check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
1792 }
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ bvsub_no_overflow()

expr z3::bvsub_no_overflow ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1784 of file z3++.h.

1784 {
1785 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
1786 }
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ bvsub_no_underflow()

expr z3::bvsub_no_underflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
inline

Definition at line 1787 of file z3++.h.

1787 {
1788 check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
1789 }
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ check_context()

void z3::check_context ( object const &  a,
object const &  b 
)
inline

Definition at line 410 of file z3++.h.

410{ (void)a; (void)b; assert(a.m_ctx == b.m_ctx); }

Referenced by cond(), exists(), fma(), forall(), context::function(), indexof(), lambda(), last_indexof(), prefixof(), context::recdef(), context::recfun(), select(), set_intersect(), set_union(), store(), suffixof(), and when().

◆ concat() [1/2]

expr z3::concat ( expr const &  a,
expr const &  b 
)
inline

Definition at line 2066 of file z3++.h.

2066 {
2067 check_context(a, b);
2068 Z3_ast r;
2069 if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
2070 Z3_ast _args[2] = { a, b };
2071 r = Z3_mk_seq_concat(a.ctx(), 2, _args);
2072 }
2073 else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
2074 Z3_ast _args[2] = { a, b };
2075 r = Z3_mk_re_concat(a.ctx(), 2, _args);
2076 }
2077 else {
2078 r = Z3_mk_concat(a.ctx(), a, b);
2079 }
2080 a.ctx().check_error();
2081 return expr(a.ctx(), r);
2082 }
bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s)
Check if s is a sequence sort.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s)
Check if s is a regular expression sort.

◆ concat() [2/2]

expr z3::concat ( expr_vector const &  args)
inline

Definition at line 2084 of file z3++.h.

2084 {
2085 Z3_ast r;
2086 assert(args.size() > 0);
2087 if (args.size() == 1) {
2088 return args[0];
2089 }
2090 context& ctx = args[0].ctx();
2091 array<Z3_ast> _args(args);
2092 if (Z3_is_seq_sort(ctx, args[0].get_sort())) {
2093 r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
2094 }
2095 else if (Z3_is_re_sort(ctx, args[0].get_sort())) {
2096 r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
2097 }
2098 else {
2099 r = _args[args.size()-1];
2100 for (unsigned i = args.size()-1; i > 0; ) {
2101 --i;
2102 r = Z3_mk_concat(ctx, _args[i], r);
2103 ctx.check_error();
2104 }
2105 }
2106 ctx.check_error();
2107 return expr(ctx, r);
2108 }

◆ cond()

tactic z3::cond ( probe const &  p,
tactic const &  t1,
tactic const &  t2 
)
inline

Definition at line 2898 of file z3++.h.

2898 {
2899 check_context(p, t1); check_context(p, t2);
2900 Z3_tactic r = Z3_tactic_cond(t1.ctx(), p, t1, t2);
2901 t1.check_error();
2902 return tactic(t1.ctx(), r);
2903 }
Z3_tactic Z3_API Z3_tactic_cond(Z3_context c, Z3_probe p, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal if the probe p evaluates to true, and t2 if p evaluat...

◆ const_array()

expr z3::const_array ( sort const &  d,
expr const &  v 
)
inline

Definition at line 3310 of file z3++.h.

3310 {
3312 }
#define MK_EXPR2(_fn, _arg1, _arg2)
Definition: z3++.h:3304
Z3_ast Z3_API Z3_mk_const_array(Z3_context c, Z3_sort domain, Z3_ast v)
Create the constant array.

◆ distinct()

expr z3::distinct ( expr_vector const &  args)
inline

Definition at line 2057 of file z3++.h.

2057 {
2058 assert(args.size() > 0);
2059 context& ctx = args[0].ctx();
2060 array<Z3_ast> _args(args);
2061 Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
2062 ctx.check_error();
2063 return expr(ctx, r);
2064 }
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

◆ empty()

expr z3::empty ( sort const &  s)
inline

Definition at line 3366 of file z3++.h.

3366 {
3367 Z3_ast r = Z3_mk_seq_empty(s.ctx(), s);
3368 s.check_error();
3369 return expr(s.ctx(), r);
3370 }
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq)
Create an empty sequence of the sequence sort seq.

◆ empty_set()

expr z3::empty_set ( sort const &  s)
inline

Definition at line 3314 of file z3++.h.

3314 {
3316 }
#define MK_EXPR1(_fn, _arg)
Definition: z3++.h:3299
Z3_ast Z3_API Z3_mk_empty_set(Z3_context c, Z3_sort domain)
Create the empty set.

◆ eq()

bool z3::eq ( ast const &  a,
ast const &  b 
)
inline

Definition at line 510 of file z3++.h.

510{ return Z3_is_eq_ast(a.ctx(), a, b); }
bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2)
Compare terms.

◆ exists() [1/5]

expr z3::exists ( expr const &  x,
expr const &  b 
)
inline

Definition at line 1959 of file z3++.h.

1959 {
1960 check_context(x, b);
1961 Z3_app vars[] = {(Z3_app) x};
1962 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1963 }
Z3_ast Z3_API Z3_mk_exists_const(Z3_context c, unsigned weight, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], Z3_ast body)
Similar to Z3_mk_forall_const.

◆ exists() [2/5]

expr z3::exists ( expr const &  x1,
expr const &  x2,
expr const &  b 
)
inline

Definition at line 1964 of file z3++.h.

1964 {
1965 check_context(x1, b); check_context(x2, b);
1966 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
1967 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1968 }

◆ exists() [3/5]

expr z3::exists ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  b 
)
inline

Definition at line 1969 of file z3++.h.

1969 {
1970 check_context(x1, b); check_context(x2, b); check_context(x3, b);
1971 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
1972 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1973 }

◆ exists() [4/5]

expr z3::exists ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  x4,
expr const &  b 
)
inline

Definition at line 1974 of file z3++.h.

1974 {
1975 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
1976 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
1977 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1978 }

◆ exists() [5/5]

expr z3::exists ( expr_vector const &  xs,
expr const &  b 
)
inline

Definition at line 1979 of file z3++.h.

1979 {
1980 array<Z3_app> vars(xs);
1981 Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1982 }

◆ fail_if()

tactic z3::fail_if ( probe const &  p)
inline

Definition at line 2887 of file z3++.h.

2887 {
2888 Z3_tactic r = Z3_tactic_fail_if(p.ctx(), p);
2889 p.check_error();
2890 return tactic(p.ctx(), r);
2891 }
Z3_tactic Z3_API Z3_tactic_fail_if(Z3_context c, Z3_probe p)
Return a tactic that fails if the probe p evaluates to false.

◆ fma()

expr z3::fma ( expr const &  a,
expr const &  b,
expr const &  c,
expr const &  rm 
)
inline

Definition at line 1631 of file z3++.h.

1631 {
1632 check_context(a, b); check_context(a, c); check_context(a, rm);
1633 assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
1634 Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
1635 a.check_error();
1636 return expr(a.ctx(), r);
1637 }
Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Floating-point fused multiply-add.

◆ forall() [1/5]

expr z3::forall ( expr const &  x,
expr const &  b 
)
inline

Definition at line 1935 of file z3++.h.

1935 {
1936 check_context(x, b);
1937 Z3_app vars[] = {(Z3_app) x};
1938 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1939 }
Z3_ast Z3_API Z3_mk_forall_const(Z3_context c, unsigned weight, unsigned num_bound, Z3_app const bound[], unsigned num_patterns, Z3_pattern const patterns[], Z3_ast body)
Create a universal quantifier using a list of constants that will form the set of bound variables.

◆ forall() [2/5]

expr z3::forall ( expr const &  x1,
expr const &  x2,
expr const &  b 
)
inline

Definition at line 1940 of file z3++.h.

1940 {
1941 check_context(x1, b); check_context(x2, b);
1942 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
1943 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1944 }

◆ forall() [3/5]

expr z3::forall ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  b 
)
inline

Definition at line 1945 of file z3++.h.

1945 {
1946 check_context(x1, b); check_context(x2, b); check_context(x3, b);
1947 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
1948 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1949 }

◆ forall() [4/5]

expr z3::forall ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  x4,
expr const &  b 
)
inline

Definition at line 1950 of file z3++.h.

1950 {
1951 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
1952 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
1953 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1954 }

◆ forall() [5/5]

expr z3::forall ( expr_vector const &  xs,
expr const &  b 
)
inline

Definition at line 1955 of file z3++.h.

1955 {
1956 array<Z3_app> vars(xs);
1957 Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
1958 }

◆ full_set()

expr z3::full_set ( sort const &  s)
inline

Definition at line 3318 of file z3++.h.

3318 {
3320 }
Z3_ast Z3_API Z3_mk_full_set(Z3_context c, Z3_sort domain)
Create the full set.

◆ function() [1/9]

func_decl z3::function ( char const *  name,
sort const &  d1,
sort const &  d2,
sort const &  d3,
sort const &  d4,
sort const &  d5,
sort const &  range 
)
inline

Definition at line 3233 of file z3++.h.

3233 {
3234 return range.ctx().function(name, d1, d2, d3, d4, d5, range);
3235 }
func_decl function(symbol const &name, unsigned arity, sort const *domain, sort const &range)
Definition: z3++.h:2979
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3431

◆ function() [2/9]

func_decl z3::function ( char const *  name,
sort const &  d1,
sort const &  d2,
sort const &  d3,
sort const &  d4,
sort const &  range 
)
inline

Definition at line 3230 of file z3++.h.

3230 {
3231 return range.ctx().function(name, d1, d2, d3, d4, range);
3232 }

◆ function() [3/9]

func_decl z3::function ( char const *  name,
sort const &  d1,
sort const &  d2,
sort const &  d3,
sort const &  range 
)
inline

Definition at line 3227 of file z3++.h.

3227 {
3228 return range.ctx().function(name, d1, d2, d3, range);
3229 }

◆ function() [4/9]

func_decl z3::function ( char const *  name,
sort const &  d1,
sort const &  d2,
sort const &  range 
)
inline

Definition at line 3224 of file z3++.h.

3224 {
3225 return range.ctx().function(name, d1, d2, range);
3226 }

◆ function() [5/9]

func_decl z3::function ( char const *  name,
sort const &  domain,
sort const &  range 
)
inline

Definition at line 3221 of file z3++.h.

3221 {
3222 return range.ctx().function(name, domain, range);
3223 }

◆ function() [6/9]

func_decl z3::function ( char const *  name,
sort_vector const &  domain,
sort const &  range 
)
inline

Definition at line 3236 of file z3++.h.

3236 {
3237 return range.ctx().function(name, domain, range);
3238 }

◆ function() [7/9]

func_decl z3::function ( char const *  name,
unsigned  arity,
sort const *  domain,
sort const &  range 
)
inline

Definition at line 3218 of file z3++.h.

3218 {
3219 return range.ctx().function(name, arity, domain, range);
3220 }

◆ function() [8/9]

func_decl z3::function ( std::string const &  name,
sort_vector const &  domain,
sort const &  range 
)
inline

Definition at line 3239 of file z3++.h.

3239 {
3240 return range.ctx().function(name.c_str(), domain, range);
3241 }

◆ function() [9/9]

func_decl z3::function ( symbol const &  name,
unsigned  arity,
sort const *  domain,
sort const &  range 
)
inline

Definition at line 3215 of file z3++.h.

3215 {
3216 return range.ctx().function(name, arity, domain, range);
3217 }

◆ implies() [1/3]

expr z3::implies ( bool  a,
expr const &  b 
)
inline

Definition at line 1266 of file z3++.h.

1266{ return implies(b.ctx().bool_val(a), b); }
expr implies(bool a, expr const &b)
Definition: z3++.h:1266

◆ implies() [2/3]

expr z3::implies ( expr const &  a,
bool  b 
)
inline

Definition at line 1265 of file z3++.h.

1265{ return implies(a, a.ctx().bool_val(b)); }

◆ implies() [3/3]

expr z3::implies ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1261 of file z3++.h.

1261 {
1262 assert(a.is_bool() && b.is_bool());
1264 }
#define _Z3_MK_BIN_(a, b, binop)
Definition: z3++.h:1254
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.

◆ in_re()

expr z3::in_re ( expr const &  s,
expr const &  re 
)
inline

Definition at line 3398 of file z3++.h.

3398 {
3399 MK_EXPR2(Z3_mk_seq_in_re, s, re);
3400 }
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re)
Check if seq is in the language generated by the regular expression re.

◆ indexof()

expr z3::indexof ( expr const &  s,
expr const &  substr,
expr const &  offset 
)
inline

Definition at line 3383 of file z3++.h.

3383 {
3384 check_context(s, substr); check_context(s, offset);
3385 Z3_ast r = Z3_mk_seq_index(s.ctx(), s, substr, offset);
3386 s.check_error();
3387 return expr(s.ctx(), r);
3388 }
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset)
Return index of first occurrence of substr in s starting from offset offset. If s does not contain su...

◆ int2bv()

expr z3::int2bv ( unsigned  n,
expr const &  a 
)
inline

Definition at line 1773 of file z3++.h.

1773{ Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ is_int()

expr z3::is_int ( expr const &  e)
inline

Definition at line 1309 of file z3++.h.

1309{ _Z3_MK_UN_(e, Z3_mk_is_int); }
#define _Z3_MK_UN_(a, mkun)
Definition: z3++.h:1301
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.

◆ ite()

expr z3::ite ( expr const &  c,
expr const &  t,
expr const &  e 
)
inline

Create the if-then-else expression ite(c, t, e)

Precondition
c.is_bool()

Definition at line 1645 of file z3++.h.

1645 {
1646 check_context(c, t); check_context(c, e);
1647 assert(c.is_bool());
1648 Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
1649 c.check_error();
1650 return expr(c.ctx(), r);
1651 }

◆ lambda() [1/5]

expr z3::lambda ( expr const &  x,
expr const &  b 
)
inline

Definition at line 1983 of file z3++.h.

1983 {
1984 check_context(x, b);
1985 Z3_app vars[] = {(Z3_app) x};
1986 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 1, vars, b); b.check_error(); return expr(b.ctx(), r);
1987 }
Z3_ast Z3_API Z3_mk_lambda_const(Z3_context c, unsigned num_bound, Z3_app const bound[], Z3_ast body)
Create a lambda expression using a list of constants that form the set of bound variables.

◆ lambda() [2/5]

expr z3::lambda ( expr const &  x1,
expr const &  x2,
expr const &  b 
)
inline

Definition at line 1988 of file z3++.h.

1988 {
1989 check_context(x1, b); check_context(x2, b);
1990 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
1991 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 2, vars, b); b.check_error(); return expr(b.ctx(), r);
1992 }

◆ lambda() [3/5]

expr z3::lambda ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  b 
)
inline

Definition at line 1993 of file z3++.h.

1993 {
1994 check_context(x1, b); check_context(x2, b); check_context(x3, b);
1995 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
1996 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 3, vars, b); b.check_error(); return expr(b.ctx(), r);
1997 }

◆ lambda() [4/5]

expr z3::lambda ( expr const &  x1,
expr const &  x2,
expr const &  x3,
expr const &  x4,
expr const &  b 
)
inline

Definition at line 1998 of file z3++.h.

1998 {
1999 check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
2000 Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
2001 Z3_ast r = Z3_mk_lambda_const(b.ctx(), 4, vars, b); b.check_error(); return expr(b.ctx(), r);
2002 }

◆ lambda() [5/5]

expr z3::lambda ( expr_vector const &  xs,
expr const &  b 
)
inline

Definition at line 2003 of file z3++.h.

2003 {
2004 array<Z3_app> vars(xs);
2005 Z3_ast r = Z3_mk_lambda_const(b.ctx(), vars.size(), vars.ptr(), b); b.check_error(); return expr(b.ctx(), r);
2006 }

◆ last_indexof()

expr z3::last_indexof ( expr const &  s,
expr const &  substr 
)
inline

Definition at line 3389 of file z3++.h.

3389 {
3390 check_context(s, substr);
3391 Z3_ast r = Z3_mk_seq_last_index(s.ctx(), s, substr);
3392 s.check_error();
3393 return expr(s.ctx(), r);
3394 }
Z3_ast Z3_API Z3_mk_seq_last_index(Z3_context c, Z3_ast, Z3_ast substr)
Return the last occurrence of substr in s. If s does not contain substr, then the value is -1,...

◆ linear_order()

func_decl z3::linear_order ( sort const &  a,
unsigned  index 
)
inline

Definition at line 1809 of file z3++.h.

1809 {
1810 return to_func_decl(a.ctx(), Z3_mk_linear_order(a.ctx(), a, index));
1811 }
func_decl to_func_decl(context &c, Z3_func_decl f)
Definition: z3++.h:1672
Z3_func_decl Z3_API Z3_mk_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a linear ordering relation over signature a. The relation is identified by the index id.

◆ lshr() [1/3]

expr z3::lshr ( expr const &  a,
expr const &  b 
)
inline

logic shift right operator for bitvectors

Definition at line 1753 of file z3++.h.

1753{ return to_expr(a.ctx(), Z3_mk_bvlshr(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvlshr(Z3_context c, Z3_ast t1, Z3_ast t2)
Logical shift right.

Referenced by lshr().

◆ lshr() [2/3]

expr z3::lshr ( expr const &  a,
int  b 
)
inline

Definition at line 1754 of file z3++.h.

1754{ return lshr(a, a.ctx().num_val(b, a.get_sort())); }
expr lshr(int a, expr const &b)
Definition: z3++.h:1755

◆ lshr() [3/3]

expr z3::lshr ( int  a,
expr const &  b 
)
inline

Definition at line 1755 of file z3++.h.

1755{ return lshr(b.ctx().num_val(a, b.get_sort()), b); }

◆ max()

expr z3::max ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1591 of file z3++.h.

1591 {
1592 check_context(a, b);
1593 Z3_ast r;
1594 if (a.is_arith()) {
1595 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
1596 }
1597 else if (a.is_bv()) {
1598 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
1599 }
1600 else {
1601 assert(a.is_fpa());
1602 r = Z3_mk_fpa_max(a.ctx(), a, b);
1603 }
1604 return expr(a.ctx(), r);
1605 }
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2)
Maximum of floating-point numbers.

Referenced by Context::repeat().

◆ min()

expr z3::min ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1576 of file z3++.h.

1576 {
1577 check_context(a, b);
1578 Z3_ast r;
1579 if (a.is_arith()) {
1580 r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
1581 }
1582 else if (a.is_bv()) {
1583 r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
1584 }
1585 else {
1586 assert(a.is_fpa());
1587 r = Z3_mk_fpa_min(a.ctx(), a, b);
1588 }
1589 return expr(a.ctx(), r);
1590 }
Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2)
Minimum of floating-point numbers.

◆ mk_and()

expr z3::mk_and ( expr_vector const &  args)
inline

Definition at line 2116 of file z3++.h.

2116 {
2117 array<Z3_ast> _args(args);
2118 Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
2119 args.check_error();
2120 return expr(args.ctx(), r);
2121 }
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

◆ mk_or()

expr z3::mk_or ( expr_vector const &  args)
inline

Definition at line 2110 of file z3++.h.

2110 {
2111 array<Z3_ast> _args(args);
2112 Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
2113 args.check_error();
2114 return expr(args.ctx(), r);
2115 }
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

◆ mod() [1/3]

expr z3::mod ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1273 of file z3++.h.

1273 {
1274 if (a.is_bv()) {
1275 _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
1276 }
1277 else {
1278 _Z3_MK_BIN_(a, b, Z3_mk_mod);
1279 }
1280 }
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

Referenced by operator%().

◆ mod() [2/3]

expr z3::mod ( expr const &  a,
int  b 
)
inline

Definition at line 1281 of file z3++.h.

1281{ return mod(a, a.ctx().num_val(b, a.get_sort())); }
expr mod(int a, expr const &b)
Definition: z3++.h:1282

◆ mod() [3/3]

expr z3::mod ( int  a,
expr const &  b 
)
inline

Definition at line 1282 of file z3++.h.

1282{ return mod(b.ctx().num_val(a, b.get_sort()), b); }

◆ nand()

expr z3::nand ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1573 of file z3++.h.

1573{ check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nand.

◆ nor()

expr z3::nor ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1574 of file z3++.h.

1574{ check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nor.

◆ operator!() [1/2]

expr z3::operator! ( expr const &  a)
inline
Precondition
a.is_bool()

Definition at line 1307 of file z3++.h.

1307{ assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

◆ operator!() [2/2]

probe z3::operator! ( probe const &  p)
inline

Definition at line 2751 of file z3++.h.

2751 {
2752 Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
2753 }
Z3_probe Z3_API Z3_probe_not(Z3_context x, Z3_probe p)
Return a probe that evaluates to "true" when p does not evaluate to true.

◆ operator!=() [1/3]

expr z3::operator!= ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1347 of file z3++.h.

1347 {
1348 check_context(a, b);
1349 Z3_ast args[2] = { a, b };
1350 Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
1351 a.check_error();
1352 return expr(a.ctx(), r);
1353 }

◆ operator!=() [2/3]

expr z3::operator!= ( expr const &  a,
int  b 
)
inline

Definition at line 1354 of file z3++.h.

1354{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }

◆ operator!=() [3/3]

expr z3::operator!= ( int  a,
expr const &  b 
)
inline

Definition at line 1355 of file z3++.h.

1355{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

◆ operator%() [1/3]

expr z3::operator% ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1284 of file z3++.h.

1284{ return mod(a, b); }

◆ operator%() [2/3]

expr z3::operator% ( expr const &  a,
int  b 
)
inline

Definition at line 1285 of file z3++.h.

1285{ return mod(a, b); }

◆ operator%() [3/3]

expr z3::operator% ( int  a,
expr const &  b 
)
inline

Definition at line 1286 of file z3++.h.

1286{ return mod(a, b); }

◆ operator&() [1/4]

expr z3::operator& ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1561 of file z3++.h.

1561{ check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ operator&() [2/4]

expr z3::operator& ( expr const &  a,
int  b 
)
inline

Definition at line 1562 of file z3++.h.

1562{ return a & a.ctx().num_val(b, a.get_sort()); }

◆ operator&() [3/4]

expr z3::operator& ( int  a,
expr const &  b 
)
inline

Definition at line 1563 of file z3++.h.

1563{ return b.ctx().num_val(a, b.get_sort()) & b; }

◆ operator&() [4/4]

tactic z3::operator& ( tactic const &  t1,
tactic const &  t2 
)
inline

Definition at line 2632 of file z3++.h.

2632 {
2633 check_context(t1, t2);
2634 Z3_tactic r = Z3_tactic_and_then(t1.ctx(), t1, t2);
2635 t1.check_error();
2636 return tactic(t1.ctx(), r);
2637 }
Z3_tactic Z3_API Z3_tactic_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and t2 to every subgoal produced by t1.

◆ operator&&() [1/4]

expr z3::operator&& ( bool  a,
expr const &  b 
)
inline
Precondition
b.is_bool()

Definition at line 1323 of file z3++.h.

1323{ return b.ctx().bool_val(a) && b; }

◆ operator&&() [2/4]

expr z3::operator&& ( expr const &  a,
bool  b 
)
inline
Precondition
a.is_bool()

Definition at line 1322 of file z3++.h.

1322{ return a && a.ctx().bool_val(b); }

◆ operator&&() [3/4]

expr z3::operator&& ( expr const &  a,
expr const &  b 
)
inline
Precondition
a.is_bool()
b.is_bool()

Definition at line 1313 of file z3++.h.

1313 {
1314 check_context(a, b);
1315 assert(a.is_bool() && b.is_bool());
1316 Z3_ast args[2] = { a, b };
1317 Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
1318 a.check_error();
1319 return expr(a.ctx(), r);
1320 }

◆ operator&&() [4/4]

probe z3::operator&& ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2745 of file z3++.h.

2745 {
2746 check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2747 }
Z3_probe Z3_API Z3_probe_and(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when p1 and p2 evaluates to true.

◆ operator*() [1/3]

expr z3::operator* ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1387 of file z3++.h.

1387 {
1388 check_context(a, b);
1389 Z3_ast r = 0;
1390 if (a.is_arith() && b.is_arith()) {
1391 Z3_ast args[2] = { a, b };
1392 r = Z3_mk_mul(a.ctx(), 2, args);
1393 }
1394 else if (a.is_bv() && b.is_bv()) {
1395 r = Z3_mk_bvmul(a.ctx(), a, b);
1396 }
1397 else if (a.is_fpa() && b.is_fpa()) {
1398 r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1399 }
1400 else {
1401 // operator is not supported by given arguments.
1402 assert(false);
1403 }
1404 a.check_error();
1405 return expr(a.ctx(), r);
1406 }
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point multiplication.

◆ operator*() [2/3]

expr z3::operator* ( expr const &  a,
int  b 
)
inline

Definition at line 1407 of file z3++.h.

1407{ return a * a.ctx().num_val(b, a.get_sort()); }

◆ operator*() [3/3]

expr z3::operator* ( int  a,
expr const &  b 
)
inline

Definition at line 1408 of file z3++.h.

1408{ return b.ctx().num_val(a, b.get_sort()) * b; }

◆ operator+() [1/3]

expr z3::operator+ ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1357 of file z3++.h.

1357 {
1358 check_context(a, b);
1359 Z3_ast r = 0;
1360 if (a.is_arith() && b.is_arith()) {
1361 Z3_ast args[2] = { a, b };
1362 r = Z3_mk_add(a.ctx(), 2, args);
1363 }
1364 else if (a.is_bv() && b.is_bv()) {
1365 r = Z3_mk_bvadd(a.ctx(), a, b);
1366 }
1367 else if (a.is_seq() && b.is_seq()) {
1368 return concat(a, b);
1369 }
1370 else if (a.is_re() && b.is_re()) {
1371 Z3_ast _args[2] = { a, b };
1372 r = Z3_mk_re_union(a.ctx(), 2, _args);
1373 }
1374 else if (a.is_fpa() && b.is_fpa()) {
1375 r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1376 }
1377 else {
1378 // operator is not supported by given arguments.
1379 assert(false);
1380 }
1381 a.check_error();
1382 return expr(a.ctx(), r);
1383 }
expr concat(expr_vector const &args)
Definition: z3++.h:2084
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].
Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point addition.

◆ operator+() [2/3]

expr z3::operator+ ( expr const &  a,
int  b 
)
inline

Definition at line 1384 of file z3++.h.

1384{ return a + a.ctx().num_val(b, a.get_sort()); }

◆ operator+() [3/3]

expr z3::operator+ ( int  a,
expr const &  b 
)
inline

Definition at line 1385 of file z3++.h.

1385{ return b.ctx().num_val(a, b.get_sort()) + b; }

◆ operator-() [1/4]

expr z3::operator- ( expr const &  a)
inline

Definition at line 1450 of file z3++.h.

1450 {
1451 Z3_ast r = 0;
1452 if (a.is_arith()) {
1453 r = Z3_mk_unary_minus(a.ctx(), a);
1454 }
1455 else if (a.is_bv()) {
1456 r = Z3_mk_bvneg(a.ctx(), a);
1457 }
1458 else if (a.is_fpa()) {
1459 r = Z3_mk_fpa_neg(a.ctx(), a);
1460 }
1461 else {
1462 // operator is not supported by given arguments.
1463 assert(false);
1464 }
1465 a.check_error();
1466 return expr(a.ctx(), r);
1467 }
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.

◆ operator-() [2/4]

expr z3::operator- ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1469 of file z3++.h.

1469 {
1470 check_context(a, b);
1471 Z3_ast r = 0;
1472 if (a.is_arith() && b.is_arith()) {
1473 Z3_ast args[2] = { a, b };
1474 r = Z3_mk_sub(a.ctx(), 2, args);
1475 }
1476 else if (a.is_bv() && b.is_bv()) {
1477 r = Z3_mk_bvsub(a.ctx(), a, b);
1478 }
1479 else if (a.is_fpa() && b.is_fpa()) {
1480 r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1481 }
1482 else {
1483 // operator is not supported by given arguments.
1484 assert(false);
1485 }
1486 a.check_error();
1487 return expr(a.ctx(), r);
1488 }
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] - ... - args[num_args - 1].
Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point subtraction.

◆ operator-() [3/4]

expr z3::operator- ( expr const &  a,
int  b 
)
inline

Definition at line 1489 of file z3++.h.

1489{ return a - a.ctx().num_val(b, a.get_sort()); }

◆ operator-() [4/4]

expr z3::operator- ( int  a,
expr const &  b 
)
inline

Definition at line 1490 of file z3++.h.

1490{ return b.ctx().num_val(a, b.get_sort()) - b; }

◆ operator/() [1/3]

expr z3::operator/ ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1428 of file z3++.h.

1428 {
1429 check_context(a, b);
1430 Z3_ast r = 0;
1431 if (a.is_arith() && b.is_arith()) {
1432 r = Z3_mk_div(a.ctx(), a, b);
1433 }
1434 else if (a.is_bv() && b.is_bv()) {
1435 r = Z3_mk_bvsdiv(a.ctx(), a, b);
1436 }
1437 else if (a.is_fpa() && b.is_fpa()) {
1438 r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1439 }
1440 else {
1441 // operator is not supported by given arguments.
1442 assert(false);
1443 }
1444 a.check_error();
1445 return expr(a.ctx(), r);
1446 }
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point division.

◆ operator/() [2/3]

expr z3::operator/ ( expr const &  a,
int  b 
)
inline

Definition at line 1447 of file z3++.h.

1447{ return a / a.ctx().num_val(b, a.get_sort()); }

◆ operator/() [3/3]

expr z3::operator/ ( int  a,
expr const &  b 
)
inline

Definition at line 1448 of file z3++.h.

1448{ return b.ctx().num_val(a, b.get_sort()) / b; }

◆ operator<() [1/6]

probe z3::operator< ( double  p1,
probe const &  p2 
)
inline

Definition at line 2734 of file z3++.h.

2734{ return probe(p2.ctx(), p1) < p2; }

◆ operator<() [2/6]

expr z3::operator< ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1517 of file z3++.h.

1517 {
1518 check_context(a, b);
1519 Z3_ast r = 0;
1520 if (a.is_arith() && b.is_arith()) {
1521 r = Z3_mk_lt(a.ctx(), a, b);
1522 }
1523 else if (a.is_bv() && b.is_bv()) {
1524 r = Z3_mk_bvslt(a.ctx(), a, b);
1525 }
1526 else if (a.is_fpa() && b.is_fpa()) {
1527 r = Z3_mk_fpa_lt(a.ctx(), a, b);
1528 }
1529 else {
1530 // operator is not supported by given arguments.
1531 assert(false);
1532 }
1533 a.check_error();
1534 return expr(a.ctx(), r);
1535 }
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than.

◆ operator<() [3/6]

expr z3::operator< ( expr const &  a,
int  b 
)
inline

Definition at line 1536 of file z3++.h.

1536{ return a < a.ctx().num_val(b, a.get_sort()); }

◆ operator<() [4/6]

expr z3::operator< ( int  a,
expr const &  b 
)
inline

Definition at line 1537 of file z3++.h.

1537{ return b.ctx().num_val(a, b.get_sort()) < b; }

◆ operator<() [5/6]

probe z3::operator< ( probe const &  p1,
double  p2 
)
inline

Definition at line 2733 of file z3++.h.

2733{ return p1 < probe(p1.ctx(), p2); }

◆ operator<() [6/6]

probe z3::operator< ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2730 of file z3++.h.

2730 {
2731 check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2732 }
Z3_probe Z3_API Z3_probe_lt(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is less than the value returned...

◆ operator<<() [1/13]

std::ostream & z3::operator<< ( std::ostream &  out,
apply_result const &  r 
)
inline

Definition at line 2590 of file z3++.h.

2590{ out << Z3_apply_result_to_string(r.ctx(), r); return out; }
Z3_string Z3_API Z3_apply_result_to_string(Z3_context c, Z3_apply_result r)
Convert the Z3_apply_result object returned by Z3_tactic_apply into a string.

◆ operator<<() [2/13]

std::ostream & z3::operator<< ( std::ostream &  out,
ast const &  n 
)
inline

Definition at line 506 of file z3++.h.

506 {
507 out << Z3_ast_to_string(n.ctx(), n.m_ast); return out;
508 }
Z3_string Z3_API Z3_ast_to_string(Z3_context c, Z3_ast a)
Convert the given AST node into a string.

◆ operator<<() [3/13]

std::ostream & z3::operator<< ( std::ostream &  out,
check_result  r 
)
inline

Definition at line 2288 of file z3++.h.

2288 {
2289 if (r == unsat) out << "unsat";
2290 else if (r == sat) out << "sat";
2291 else out << "unknown";
2292 return out;
2293 }

◆ operator<<() [4/13]

std::ostream & z3::operator<< ( std::ostream &  out,
exception const &  e 
)
inline

Definition at line 90 of file z3++.h.

90{ out << e.msg(); return out; }

◆ operator<<() [5/13]

std::ostream & z3::operator<< ( std::ostream &  out,
fixedpoint const &  f 
)
inline

Definition at line 2885 of file z3++.h.

2885{ return out << Z3_fixedpoint_to_string(f.ctx(), f, 0, 0); }
Z3_string Z3_API Z3_fixedpoint_to_string(Z3_context c, Z3_fixedpoint f, unsigned num_queries, Z3_ast queries[])
Print the current rules and background axioms as a string.

◆ operator<<() [6/13]

std::ostream & z3::operator<< ( std::ostream &  out,
goal const &  g 
)
inline

Definition at line 2566 of file z3++.h.

2566{ out << Z3_goal_to_string(g.ctx(), g); return out; }
Z3_string Z3_API Z3_goal_to_string(Z3_context c, Z3_goal g)
Convert a goal into a string.

◆ operator<<() [7/13]

std::ostream & z3::operator<< ( std::ostream &  out,
model const &  m 
)
inline

Definition at line 2256 of file z3++.h.

2256{ out << Z3_model_to_string(m.ctx(), m); return out; }
Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)
Convert the given model into a string.

◆ operator<<() [8/13]

std::ostream & z3::operator<< ( std::ostream &  out,
optimize const &  s 
)
inline

Definition at line 2843 of file z3++.h.

2843{ out << Z3_optimize_to_string(s.ctx(), s.m_opt); return out; }
Z3_string Z3_API Z3_optimize_to_string(Z3_context c, Z3_optimize o)
Print the current context as a string.

◆ operator<<() [9/13]

std::ostream & z3::operator<< ( std::ostream &  out,
param_descrs const &  d 
)
inline

Definition at line 456 of file z3++.h.

456{ return out << d.to_string(); }

◆ operator<<() [10/13]

std::ostream & z3::operator<< ( std::ostream &  out,
params const &  p 
)
inline

Definition at line 480 of file z3++.h.

480 {
481 out << Z3_params_to_string(p.ctx(), p); return out;
482 }
Z3_string Z3_API Z3_params_to_string(Z3_context c, Z3_params p)
Convert a parameter set into a string. This function is mainly used for printing the contents of a pa...

◆ operator<<() [11/13]

std::ostream & z3::operator<< ( std::ostream &  out,
solver const &  s 
)
inline

Definition at line 2507 of file z3++.h.

2507{ out << Z3_solver_to_string(s.ctx(), s); return out; }
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.

◆ operator<<() [12/13]

std::ostream & z3::operator<< ( std::ostream &  out,
stats const &  s 
)
inline

Definition at line 2285 of file z3++.h.

2285{ out << Z3_stats_to_string(s.ctx(), s); return out; }
Z3_string Z3_API Z3_stats_to_string(Z3_context c, Z3_stats s)
Convert a statistics into a string.

◆ operator<<() [13/13]

std::ostream & z3::operator<< ( std::ostream &  out,
symbol const &  s 
)
inline

Definition at line 425 of file z3++.h.

425 {
426 if (s.kind() == Z3_INT_SYMBOL)
427 out << "k!" << s.to_int();
428 else
429 out << s.str().c_str();
430 return out;
431 }
@ Z3_INT_SYMBOL
Definition: z3_api.h:115

◆ operator<=() [1/6]

probe z3::operator<= ( double  p1,
probe const &  p2 
)
inline

Definition at line 2724 of file z3++.h.

2724{ return probe(p2.ctx(), p1) <= p2; }

◆ operator<=() [2/6]

expr z3::operator<= ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1492 of file z3++.h.

1492 {
1493 check_context(a, b);
1494 Z3_ast r = 0;
1495 if (a.is_arith() && b.is_arith()) {
1496 r = Z3_mk_le(a.ctx(), a, b);
1497 }
1498 else if (a.is_bv() && b.is_bv()) {
1499 r = Z3_mk_bvsle(a.ctx(), a, b);
1500 }
1501 else if (a.is_fpa() && b.is_fpa()) {
1502 r = Z3_mk_fpa_leq(a.ctx(), a, b);
1503 }
1504 else {
1505 // operator is not supported by given arguments.
1506 assert(false);
1507 }
1508 a.check_error();
1509 return expr(a.ctx(), r);
1510 }
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than or equal.

◆ operator<=() [3/6]

expr z3::operator<= ( expr const &  a,
int  b 
)
inline

Definition at line 1511 of file z3++.h.

1511{ return a <= a.ctx().num_val(b, a.get_sort()); }

◆ operator<=() [4/6]

expr z3::operator<= ( int  a,
expr const &  b 
)
inline

Definition at line 1512 of file z3++.h.

1512{ return b.ctx().num_val(a, b.get_sort()) <= b; }

◆ operator<=() [5/6]

probe z3::operator<= ( probe const &  p1,
double  p2 
)
inline

Definition at line 2723 of file z3++.h.

2723{ return p1 <= probe(p1.ctx(), p2); }

◆ operator<=() [6/6]

probe z3::operator<= ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2720 of file z3++.h.

2720 {
2721 check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2722 }
Z3_probe Z3_API Z3_probe_le(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is less than or equal to the va...

◆ operator==() [1/6]

probe z3::operator== ( double  p1,
probe const &  p2 
)
inline

Definition at line 2744 of file z3++.h.

2744{ return probe(p2.ctx(), p1) == p2; }

◆ operator==() [2/6]

expr z3::operator== ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1338 of file z3++.h.

1338 {
1339 check_context(a, b);
1340 Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
1341 a.check_error();
1342 return expr(a.ctx(), r);
1343 }
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.

◆ operator==() [3/6]

expr z3::operator== ( expr const &  a,
int  b 
)
inline

Definition at line 1344 of file z3++.h.

1344{ assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }

◆ operator==() [4/6]

expr z3::operator== ( int  a,
expr const &  b 
)
inline

Definition at line 1345 of file z3++.h.

1345{ assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

◆ operator==() [5/6]

probe z3::operator== ( probe const &  p1,
double  p2 
)
inline

Definition at line 2743 of file z3++.h.

2743{ return p1 == probe(p1.ctx(), p2); }

◆ operator==() [6/6]

probe z3::operator== ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2740 of file z3++.h.

2740 {
2741 check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2742 }
Z3_probe Z3_API Z3_probe_eq(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is equal to the value returned ...

◆ operator>() [1/6]

probe z3::operator> ( double  p1,
probe const &  p2 
)
inline

Definition at line 2739 of file z3++.h.

2739{ return probe(p2.ctx(), p1) > p2; }

◆ operator>() [2/6]

expr z3::operator> ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1539 of file z3++.h.

1539 {
1540 check_context(a, b);
1541 Z3_ast r = 0;
1542 if (a.is_arith() && b.is_arith()) {
1543 r = Z3_mk_gt(a.ctx(), a, b);
1544 }
1545 else if (a.is_bv() && b.is_bv()) {
1546 r = Z3_mk_bvsgt(a.ctx(), a, b);
1547 }
1548 else if (a.is_fpa() && b.is_fpa()) {
1549 r = Z3_mk_fpa_gt(a.ctx(), a, b);
1550 }
1551 else {
1552 // operator is not supported by given arguments.
1553 assert(false);
1554 }
1555 a.check_error();
1556 return expr(a.ctx(), r);
1557 }
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.
Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than.

◆ operator>() [3/6]

expr z3::operator> ( expr const &  a,
int  b 
)
inline

Definition at line 1558 of file z3++.h.

1558{ return a > a.ctx().num_val(b, a.get_sort()); }

◆ operator>() [4/6]

expr z3::operator> ( int  a,
expr const &  b 
)
inline

Definition at line 1559 of file z3++.h.

1559{ return b.ctx().num_val(a, b.get_sort()) > b; }

◆ operator>() [5/6]

probe z3::operator> ( probe const &  p1,
double  p2 
)
inline

Definition at line 2738 of file z3++.h.

2738{ return p1 > probe(p1.ctx(), p2); }

◆ operator>() [6/6]

probe z3::operator> ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2735 of file z3++.h.

2735 {
2736 check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2737 }
Z3_probe Z3_API Z3_probe_gt(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is greater than the value retur...

◆ operator>=() [1/6]

probe z3::operator>= ( double  p1,
probe const &  p2 
)
inline

Definition at line 2729 of file z3++.h.

2729{ return probe(p2.ctx(), p1) >= p2; }

◆ operator>=() [2/6]

expr z3::operator>= ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1411 of file z3++.h.

1411 {
1412 check_context(a, b);
1413 Z3_ast r = 0;
1414 if (a.is_arith() && b.is_arith()) {
1415 r = Z3_mk_ge(a.ctx(), a, b);
1416 }
1417 else if (a.is_bv() && b.is_bv()) {
1418 r = Z3_mk_bvsge(a.ctx(), a, b);
1419 }
1420 else {
1421 // operator is not supported by given arguments.
1422 assert(false);
1423 }
1424 a.check_error();
1425 return expr(a.ctx(), r);
1426 }
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.

◆ operator>=() [3/6]

expr z3::operator>= ( expr const &  a,
int  b 
)
inline

Definition at line 1514 of file z3++.h.

1514{ return a >= a.ctx().num_val(b, a.get_sort()); }

◆ operator>=() [4/6]

expr z3::operator>= ( int  a,
expr const &  b 
)
inline

Definition at line 1515 of file z3++.h.

1515{ return b.ctx().num_val(a, b.get_sort()) >= b; }

◆ operator>=() [5/6]

probe z3::operator>= ( probe const &  p1,
double  p2 
)
inline

Definition at line 2728 of file z3++.h.

2728{ return p1 >= probe(p1.ctx(), p2); }

◆ operator>=() [6/6]

probe z3::operator>= ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2725 of file z3++.h.

2725 {
2726 check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2727 }
Z3_probe Z3_API Z3_probe_ge(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when the value returned by p1 is greater than or equal to the...

◆ operator^() [1/3]

expr z3::operator^ ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1565 of file z3++.h.

1565{ check_context(a, b); Z3_ast r = Z3_mk_bvxor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.

◆ operator^() [2/3]

expr z3::operator^ ( expr const &  a,
int  b 
)
inline

Definition at line 1566 of file z3++.h.

1566{ return a ^ a.ctx().num_val(b, a.get_sort()); }

◆ operator^() [3/3]

expr z3::operator^ ( int  a,
expr const &  b 
)
inline

Definition at line 1567 of file z3++.h.

1567{ return b.ctx().num_val(a, b.get_sort()) ^ b; }

◆ operator|() [1/4]

expr z3::operator| ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1569 of file z3++.h.

1569{ check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ operator|() [2/4]

expr z3::operator| ( expr const &  a,
int  b 
)
inline

Definition at line 1570 of file z3++.h.

1570{ return a | a.ctx().num_val(b, a.get_sort()); }

◆ operator|() [3/4]

expr z3::operator| ( int  a,
expr const &  b 
)
inline

Definition at line 1571 of file z3++.h.

1571{ return b.ctx().num_val(a, b.get_sort()) | b; }

◆ operator|() [4/4]

tactic z3::operator| ( tactic const &  t1,
tactic const &  t2 
)
inline

Definition at line 2639 of file z3++.h.

2639 {
2640 check_context(t1, t2);
2641 Z3_tactic r = Z3_tactic_or_else(t1.ctx(), t1, t2);
2642 t1.check_error();
2643 return tactic(t1.ctx(), r);
2644 }
Z3_tactic Z3_API Z3_tactic_or_else(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that first applies t1 to a given goal, if it fails then returns the result of t2 appl...

◆ operator||() [1/4]

expr z3::operator|| ( bool  a,
expr const &  b 
)
inline
Precondition
b.is_bool()

Definition at line 1336 of file z3++.h.

1336{ return b.ctx().bool_val(a) || b; }

◆ operator||() [2/4]

expr z3::operator|| ( expr const &  a,
bool  b 
)
inline
Precondition
a.is_bool()

Definition at line 1334 of file z3++.h.

1334{ return a || a.ctx().bool_val(b); }

◆ operator||() [3/4]

expr z3::operator|| ( expr const &  a,
expr const &  b 
)
inline
Precondition
a.is_bool()
b.is_bool()

Definition at line 1325 of file z3++.h.

1325 {
1326 check_context(a, b);
1327 assert(a.is_bool() && b.is_bool());
1328 Z3_ast args[2] = { a, b };
1329 Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
1330 a.check_error();
1331 return expr(a.ctx(), r);
1332 }

◆ operator||() [4/4]

probe z3::operator|| ( probe const &  p1,
probe const &  p2 
)
inline

Definition at line 2748 of file z3++.h.

2748 {
2749 check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
2750 }
Z3_probe Z3_API Z3_probe_or(Z3_context x, Z3_probe p1, Z3_probe p2)
Return a probe that evaluates to "true" when p1 or p2 evaluates to true.

◆ operator~()

expr z3::operator~ ( expr const &  a)
inline

Definition at line 1629 of file z3++.h.

1629{ Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ option()

expr z3::option ( expr const &  re)
inline

Definition at line 3404 of file z3++.h.

3404 {
3406 }
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re)
Create the regular language [re].

◆ par_and_then()

tactic z3::par_and_then ( tactic const &  t1,
tactic const &  t2 
)
inline

Definition at line 2671 of file z3++.h.

2671 {
2672 check_context(t1, t2);
2673 Z3_tactic r = Z3_tactic_par_and_then(t1.ctx(), t1, t2);
2674 t1.check_error();
2675 return tactic(t1.ctx(), r);
2676 }
Z3_tactic Z3_API Z3_tactic_par_and_then(Z3_context c, Z3_tactic t1, Z3_tactic t2)
Return a tactic that applies t1 to a given goal and then t2 to every subgoal produced by t1....

◆ par_or()

tactic z3::par_or ( unsigned  n,
tactic const *  tactics 
)
inline

Definition at line 2662 of file z3++.h.

2662 {
2663 if (n == 0) {
2664 Z3_THROW(exception("a non-zero number of tactics need to be passed to par_or"));
2665 }
2666 array<Z3_tactic> buffer(n);
2667 for (unsigned i = 0; i < n; ++i) buffer[i] = tactics[i];
2668 return tactic(tactics[0].ctx(), Z3_tactic_par_or(tactics[0].ctx(), n, buffer.ptr()));
2669 }
Exception used to sign API usage errors.
Definition: z3++.h:83
def tactics(ctx=None)
Definition: z3py.py:7887
#define Z3_THROW(x)
Definition: z3++.h:96
Z3_tactic Z3_API Z3_tactic_par_or(Z3_context c, unsigned num, Z3_tactic const ts[])
Return a tactic that applies the given tactics in parallel.

◆ partial_order()

func_decl z3::partial_order ( sort const &  a,
unsigned  index 
)
inline

Definition at line 1812 of file z3++.h.

1812 {
1813 return to_func_decl(a.ctx(), Z3_mk_partial_order(a.ctx(), a, index));
1814 }
Z3_func_decl Z3_API Z3_mk_partial_order(Z3_context c, Z3_sort a, unsigned id)
create a partial ordering relation over signature a and index id.

◆ pbeq()

expr z3::pbeq ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
inline

Definition at line 2024 of file z3++.h.

2024 {
2025 assert(es.size() > 0);
2026 context& ctx = es[0].ctx();
2027 array<Z3_ast> _es(es);
2028 Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
2029 ctx.check_error();
2030 return expr(ctx, r);
2031 }
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pbge()

expr z3::pbge ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
inline

Definition at line 2016 of file z3++.h.

2016 {
2017 assert(es.size() > 0);
2018 context& ctx = es[0].ctx();
2019 array<Z3_ast> _es(es);
2020 Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
2021 ctx.check_error();
2022 return expr(ctx, r);
2023 }
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pble()

expr z3::pble ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
inline

Definition at line 2008 of file z3++.h.

2008 {
2009 assert(es.size() > 0);
2010 context& ctx = es[0].ctx();
2011 array<Z3_ast> _es(es);
2012 Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
2013 ctx.check_error();
2014 return expr(ctx, r);
2015 }
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ piecewise_linear_order()

func_decl z3::piecewise_linear_order ( sort const &  a,
unsigned  index 
)
inline

Definition at line 1815 of file z3++.h.

1815 {
1816 return to_func_decl(a.ctx(), Z3_mk_piecewise_linear_order(a.ctx(), a, index));
1817 }
Z3_func_decl Z3_API Z3_mk_piecewise_linear_order(Z3_context c, Z3_sort a, unsigned id)
create a piecewise linear ordering relation over signature a and index id.

◆ plus()

expr z3::plus ( expr const &  re)
inline

Definition at line 3401 of file z3++.h.

3401 {
3403 }
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re)
Create the regular language re+.

◆ prefixof()

expr z3::prefixof ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3377 of file z3++.h.

3377 {
3378 check_context(a, b);
3379 Z3_ast r = Z3_mk_seq_prefix(a.ctx(), a, b);
3380 a.check_error();
3381 return expr(a.ctx(), r);
3382 }
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s)
Check if prefix is a prefix of s.

◆ pw() [1/3]

expr z3::pw ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1269 of file z3++.h.

1269{ _Z3_MK_BIN_(a, b, Z3_mk_power); }
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ pw() [2/3]

expr z3::pw ( expr const &  a,
int  b 
)
inline

Definition at line 1270 of file z3++.h.

1270{ return pw(a, a.ctx().num_val(b, a.get_sort())); }
expr pw(int a, expr const &b)
Definition: z3++.h:1271

◆ pw() [3/3]

expr z3::pw ( int  a,
expr const &  b 
)
inline

Definition at line 1271 of file z3++.h.

1271{ return pw(b.ctx().num_val(a, b.get_sort()), b); }

◆ range()

expr z3::range ( expr const &  lo,
expr const &  hi 
)
inline

Definition at line 3431 of file z3++.h.

3431 {
3432 check_context(lo, hi);
3433 Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
3434 lo.check_error();
3435 return expr(lo.ctx(), r);
3436 }
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

Referenced by AstVector::__getitem__(), z3py::AndThen(), z3py::ArraySort(), Goal::as_expr(), ApplyResult::as_expr(), FuncEntry::as_list(), FuncInterp::as_list(), z3py::AtLeast(), z3py::BoolVector(), Solver::check(), Optimize::check(), ExprRef::children(), z3py::Concat(), Solver::consequences(), z3py::CreateDatatypes(), ModelRef::decls(), z3py::describe_probes(), z3py::DisjointSum(), z3py::EnumSort(), z3py::eq(), z3py::Function(), context::function(), function(), Statistics::get_key_value(), z3py::Intersect(), z3py::IntVector(), z3py::is_quantifier(), Statistics::keys(), z3py::Lambda(), Context::mkArrayConst(), Context::mkArraySort(), Context::mkConst(), Context::mkConstDecl(), Context::mkFreshConst(), Context::mkFreshConstDecl(), Context::mkFreshFuncDecl(), Context::mkFuncDecl(), z3py::OrElse(), z3py::ParOr(), z3py::probes(), z3py::RealVarVector(), z3py::RealVector(), z3py::RecAddDefinition(), context::recfun(), recfun(), z3py::RecFunction(), AstVector::resize(), z3py::set_default_fp_sort(), Fixedpoint::set_predicate_representation(), ModelRef::sorts(), z3py::substitute(), z3py::substitute_vars(), z3py::tactics(), Solver::to_smt2(), z3py::TupleSort(), and z3py::Union().

◆ re_complement()

expr z3::re_complement ( expr const &  a)
inline

Definition at line 3428 of file z3++.h.

3428 {
3430 }
Z3_ast Z3_API Z3_mk_re_complement(Z3_context c, Z3_ast re)
Create the complement of the regular language re.

◆ re_empty()

expr z3::re_empty ( sort const &  s)
inline

Definition at line 3410 of file z3++.h.

3410 {
3411 Z3_ast r = Z3_mk_re_empty(s.ctx(), s);
3412 s.check_error();
3413 return expr(s.ctx(), r);
3414 }
Z3_ast Z3_API Z3_mk_re_empty(Z3_context c, Z3_sort re)
Create an empty regular expression of sort re.

◆ re_full()

expr z3::re_full ( sort const &  s)
inline

Definition at line 3415 of file z3++.h.

3415 {
3416 Z3_ast r = Z3_mk_re_full(s.ctx(), s);
3417 s.check_error();
3418 return expr(s.ctx(), r);
3419 }
Z3_ast Z3_API Z3_mk_re_full(Z3_context c, Z3_sort re)
Create an universal regular expression of sort re.

◆ re_intersect()

expr z3::re_intersect ( expr_vector const &  args)
inline

Definition at line 3420 of file z3++.h.

3420 {
3421 assert(args.size() > 0);
3422 context& ctx = args[0].ctx();
3423 array<Z3_ast> _args(args);
3424 Z3_ast r = Z3_mk_re_intersect(ctx, _args.size(), _args.ptr());
3425 ctx.check_error();
3426 return expr(ctx, r);
3427 }
Z3_ast Z3_API Z3_mk_re_intersect(Z3_context c, unsigned n, Z3_ast const args[])
Create the intersection of the regular languages.

◆ recfun() [1/4]

func_decl z3::recfun ( char const *  name,
sort const &  d1,
sort const &  d2,
sort const &  range 
)
inline

Definition at line 3252 of file z3++.h.

3252 {
3253 return range.ctx().recfun(name, d1, d2, range);
3254 }
func_decl recfun(symbol const &name, unsigned arity, sort const *domain, sort const &range)
Definition: z3++.h:3050

◆ recfun() [2/4]

func_decl z3::recfun ( char const *  name,
sort const &  d1,
sort const &  range 
)
inline

Definition at line 3249 of file z3++.h.

3249 {
3250 return range.ctx().recfun(name, d1, range);
3251 }

◆ recfun() [3/4]

func_decl z3::recfun ( char const *  name,
unsigned  arity,
sort const *  domain,
sort const &  range 
)
inline

Definition at line 3246 of file z3++.h.

3246 {
3247 return range.ctx().recfun(name, arity, domain, range);
3248 }

◆ recfun() [4/4]

func_decl z3::recfun ( symbol const &  name,
unsigned  arity,
sort const *  domain,
sort const &  range 
)
inline

Definition at line 3243 of file z3++.h.

3243 {
3244 return range.ctx().recfun(name, arity, domain, range);
3245 }

◆ rem() [1/3]

expr z3::rem ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1289 of file z3++.h.

1289 {
1290 if (a.is_fpa() && b.is_fpa()) {
1292 } else {
1293 _Z3_MK_BIN_(a, b, Z3_mk_rem);
1294 }
1295 }
Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 rem arg2.
Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point remainder.

◆ rem() [2/3]

expr z3::rem ( expr const &  a,
int  b 
)
inline

Definition at line 1296 of file z3++.h.

1296{ return rem(a, a.ctx().num_val(b, a.get_sort())); }
expr rem(int a, expr const &b)
Definition: z3++.h:1297

◆ rem() [3/3]

expr z3::rem ( int  a,
expr const &  b 
)
inline

Definition at line 1297 of file z3++.h.

1297{ return rem(b.ctx().num_val(a, b.get_sort()), b); }

◆ repeat()

tactic z3::repeat ( tactic const &  t,
unsigned  max = UINT_MAX 
)
inline

Definition at line 2646 of file z3++.h.

2646 {
2647 Z3_tactic r = Z3_tactic_repeat(t.ctx(), t, max);
2648 t.check_error();
2649 return tactic(t.ctx(), r);
2650 }
expr max(expr const &a, expr const &b)
Definition: z3++.h:1591
Z3_tactic Z3_API Z3_tactic_repeat(Z3_context c, Z3_tactic t, unsigned max)
Return a tactic that keeps applying t until the goal is not modified anymore or the maximum number of...

◆ reset_params()

void z3::reset_params ( )
inline

Definition at line 78 of file z3++.h.

void Z3_API Z3_global_param_reset_all(void)
Restore the value of all global (and module) parameters. This command will not affect already created...

◆ select() [1/3]

expr select ( expr const &  a,
expr const &  i 
)
inline

forward declarations

Definition at line 3256 of file z3++.h.

3256 {
3257 check_context(a, i);
3258 Z3_ast r = Z3_mk_select(a.ctx(), a, i);
3259 a.check_error();
3260 return expr(a.ctx(), r);
3261 }
Z3_ast Z3_API Z3_mk_select(Z3_context c, Z3_ast a, Z3_ast i)
Array read. The argument a is the array and i is the index of the array that gets read.

Referenced by expr::operator[](), and select().

◆ select() [2/3]

expr select ( expr const &  a,
expr_vector const &  i 
)
inline

Definition at line 3265 of file z3++.h.

3265 {
3266 check_context(a, i);
3267 array<Z3_ast> idxs(i);
3268 Z3_ast r = Z3_mk_select_n(a.ctx(), a, idxs.size(), idxs.ptr());
3269 a.check_error();
3270 return expr(a.ctx(), r);
3271 }
Z3_ast Z3_API Z3_mk_select_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs)
n-ary Array read. The argument a is the array and idxs are the indices of the array that gets read.

◆ select() [3/3]

expr z3::select ( expr const &  a,
int  i 
)
inline

Definition at line 3262 of file z3++.h.

3262 {
3263 return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
3264 }
expr select(expr const &a, int i)
Definition: z3++.h:3262

◆ set_add()

expr z3::set_add ( expr const &  s,
expr const &  e 
)
inline

Definition at line 3322 of file z3++.h.

3322 {
3323 MK_EXPR2(Z3_mk_set_add, s, e);
3324 }
Z3_ast Z3_API Z3_mk_set_add(Z3_context c, Z3_ast set, Z3_ast elem)
Add an element to a set.

◆ set_complement()

expr z3::set_complement ( expr const &  a)
inline

Definition at line 3350 of file z3++.h.

3350 {
3352 }
Z3_ast Z3_API Z3_mk_set_complement(Z3_context c, Z3_ast arg)
Take the complement of a set.

◆ set_del()

expr z3::set_del ( expr const &  s,
expr const &  e 
)
inline

Definition at line 3326 of file z3++.h.

3326 {
3327 MK_EXPR2(Z3_mk_set_del, s, e);
3328 }
Z3_ast Z3_API Z3_mk_set_del(Z3_context c, Z3_ast set, Z3_ast elem)
Remove an element to a set.

◆ set_difference()

expr z3::set_difference ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3346 of file z3++.h.

3346 {
3348 }
Z3_ast Z3_API Z3_mk_set_difference(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Take the set difference between two sets.

◆ set_intersect()

expr z3::set_intersect ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3338 of file z3++.h.

3338 {
3339 check_context(a, b);
3340 Z3_ast es[2] = { a, b };
3341 Z3_ast r = Z3_mk_set_intersect(a.ctx(), 2, es);
3342 a.check_error();
3343 return expr(a.ctx(), r);
3344 }
Z3_ast Z3_API Z3_mk_set_intersect(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the intersection of a list of sets.

◆ set_member()

expr z3::set_member ( expr const &  s,
expr const &  e 
)
inline

Definition at line 3354 of file z3++.h.

3354 {
3356 }
Z3_ast Z3_API Z3_mk_set_member(Z3_context c, Z3_ast elem, Z3_ast set)
Check for set membership.

◆ set_param() [1/3]

void z3::set_param ( char const *  param,
bool  value 
)
inline

Definition at line 76 of file z3++.h.

76{ Z3_global_param_set(param, value ? "true" : "false"); }
void Z3_API Z3_global_param_set(Z3_string param_id, Z3_string param_value)
Set a global (or module) parameter. This setting is shared by all Z3 contexts.

◆ set_param() [2/3]

void z3::set_param ( char const *  param,
char const *  value 
)
inline

Definition at line 75 of file z3++.h.

75{ Z3_global_param_set(param, value); }

◆ set_param() [3/3]

void z3::set_param ( char const *  param,
int  value 
)
inline

Definition at line 77 of file z3++.h.

77{ std::ostringstream oss; oss << value; Z3_global_param_set(param, oss.str().c_str()); }

◆ set_subset()

expr z3::set_subset ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3358 of file z3++.h.

3358 {
3360 }
Z3_ast Z3_API Z3_mk_set_subset(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Check for subsetness of sets.

◆ set_union()

expr z3::set_union ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3330 of file z3++.h.

3330 {
3331 check_context(a, b);
3332 Z3_ast es[2] = { a, b };
3333 Z3_ast r = Z3_mk_set_union(a.ctx(), 2, es);
3334 a.check_error();
3335 return expr(a.ctx(), r);
3336 }
Z3_ast Z3_API Z3_mk_set_union(Z3_context c, unsigned num_args, Z3_ast const args[])
Take the union of a list of sets.

◆ sext()

expr z3::sext ( expr const &  a,
unsigned  i 
)
inline

Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

Definition at line 1807 of file z3++.h.

1807{ return to_expr(a.ctx(), Z3_mk_sign_ext(a.ctx(), i, a)); }
Z3_ast Z3_API Z3_mk_sign_ext(Z3_context c, unsigned i, Z3_ast t1)
Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i,...

◆ shl() [1/3]

expr z3::shl ( expr const &  a,
expr const &  b 
)
inline

shift left operator for bitvectors

Definition at line 1746 of file z3++.h.

1746{ return to_expr(a.ctx(), Z3_mk_bvshl(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.

Referenced by shl().

◆ shl() [2/3]

expr z3::shl ( expr const &  a,
int  b 
)
inline

Definition at line 1747 of file z3++.h.

1747{ return shl(a, a.ctx().num_val(b, a.get_sort())); }
expr shl(int a, expr const &b)
Definition: z3++.h:1748

◆ shl() [3/3]

expr z3::shl ( int  a,
expr const &  b 
)
inline

Definition at line 1748 of file z3++.h.

1748{ return shl(b.ctx().num_val(a, b.get_sort()), b); }

◆ sle() [1/3]

expr z3::sle ( expr const &  a,
expr const &  b 
)
inline

signed less than or equal to operator for bitvectors.

Definition at line 1680 of file z3++.h.

1680{ return to_expr(a.ctx(), Z3_mk_bvsle(a.ctx(), a, b)); }

Referenced by sle().

◆ sle() [2/3]

expr z3::sle ( expr const &  a,
int  b 
)
inline

Definition at line 1681 of file z3++.h.

1681{ return sle(a, a.ctx().num_val(b, a.get_sort())); }
expr sle(int a, expr const &b)
Definition: z3++.h:1682

◆ sle() [3/3]

expr z3::sle ( int  a,
expr const &  b 
)
inline

Definition at line 1682 of file z3++.h.

1682{ return sle(b.ctx().num_val(a, b.get_sort()), b); }

◆ slt() [1/3]

expr z3::slt ( expr const &  a,
expr const &  b 
)
inline

signed less than operator for bitvectors.

Definition at line 1686 of file z3++.h.

1686{ return to_expr(a.ctx(), Z3_mk_bvslt(a.ctx(), a, b)); }

Referenced by slt().

◆ slt() [2/3]

expr z3::slt ( expr const &  a,
int  b 
)
inline

Definition at line 1687 of file z3++.h.

1687{ return slt(a, a.ctx().num_val(b, a.get_sort())); }
expr slt(int a, expr const &b)
Definition: z3++.h:1688

◆ slt() [3/3]

expr z3::slt ( int  a,
expr const &  b 
)
inline

Definition at line 1688 of file z3++.h.

1688{ return slt(b.ctx().num_val(a, b.get_sort()), b); }

◆ smod() [1/3]

expr z3::smod ( expr const &  a,
expr const &  b 
)
inline

signed modulus operator for bitvectors

Definition at line 1732 of file z3++.h.

1732{ return to_expr(a.ctx(), Z3_mk_bvsmod(a.ctx(), a, b)); }

Referenced by smod().

◆ smod() [2/3]

expr z3::smod ( expr const &  a,
int  b 
)
inline

Definition at line 1733 of file z3++.h.

1733{ return smod(a, a.ctx().num_val(b, a.get_sort())); }
expr smod(int a, expr const &b)
Definition: z3++.h:1734

◆ smod() [3/3]

expr z3::smod ( int  a,
expr const &  b 
)
inline

Definition at line 1734 of file z3++.h.

1734{ return smod(b.ctx().num_val(a, b.get_sort()), b); }

◆ sqrt()

expr z3::sqrt ( expr const &  a,
expr const &  rm 
)
inline

Definition at line 1622 of file z3++.h.

1622 {
1623 check_context(a, rm);
1624 assert(a.is_fpa());
1625 Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
1626 a.check_error();
1627 return expr(a.ctx(), r);
1628 }
Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point square root.

◆ srem() [1/3]

expr z3::srem ( expr const &  a,
expr const &  b 
)
inline

signed remainder operator for bitvectors

Definition at line 1725 of file z3++.h.

1725{ return to_expr(a.ctx(), Z3_mk_bvsrem(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvsrem(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows dividend).

Referenced by srem().

◆ srem() [2/3]

expr z3::srem ( expr const &  a,
int  b 
)
inline

Definition at line 1726 of file z3++.h.

1726{ return srem(a, a.ctx().num_val(b, a.get_sort())); }
expr srem(int a, expr const &b)
Definition: z3++.h:1727

◆ srem() [3/3]

expr z3::srem ( int  a,
expr const &  b 
)
inline

Definition at line 1727 of file z3++.h.

1727{ return srem(b.ctx().num_val(a, b.get_sort()), b); }

◆ star()

expr z3::star ( expr const &  re)
inline

Definition at line 3407 of file z3++.h.

3407 {
3409 }
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re)
Create the regular language re*.

◆ store() [1/5]

expr z3::store ( expr const &  a,
expr const &  i,
expr const &  v 
)
inline

Definition at line 3273 of file z3++.h.

3273 {
3274 check_context(a, i); check_context(a, v);
3275 Z3_ast r = Z3_mk_store(a.ctx(), a, i, v);
3276 a.check_error();
3277 return expr(a.ctx(), r);
3278 }
Z3_ast Z3_API Z3_mk_store(Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
Array update.

Referenced by store().

◆ store() [2/5]

expr z3::store ( expr const &  a,
expr  i,
int  v 
)
inline

Definition at line 3281 of file z3++.h.

3281{ return store(a, i, a.ctx().num_val(v, a.get_sort().array_range())); }
expr store(expr const &a, expr_vector const &i, expr const &v)
Definition: z3++.h:3285

◆ store() [3/5]

expr z3::store ( expr const &  a,
expr_vector const &  i,
expr const &  v 
)
inline

Definition at line 3285 of file z3++.h.

3285 {
3286 check_context(a, i); check_context(a, v);
3287 array<Z3_ast> idxs(i);
3288 Z3_ast r = Z3_mk_store_n(a.ctx(), a, idxs.size(), idxs.ptr(), v);
3289 a.check_error();
3290 return expr(a.ctx(), r);
3291 }
Z3_ast Z3_API Z3_mk_store_n(Z3_context c, Z3_ast a, unsigned n, Z3_ast const *idxs, Z3_ast v)
n-ary Array update.

◆ store() [4/5]

expr z3::store ( expr const &  a,
int  i,
expr const &  v 
)
inline

Definition at line 3280 of file z3++.h.

3280{ return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), v); }

◆ store() [5/5]

expr z3::store ( expr const &  a,
int  i,
int  v 
)
inline

Definition at line 3282 of file z3++.h.

3282 {
3283 return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), a.ctx().num_val(v, a.get_sort().array_range()));
3284 }

◆ suffixof()

expr z3::suffixof ( expr const &  a,
expr const &  b 
)
inline

Definition at line 3371 of file z3++.h.

3371 {
3372 check_context(a, b);
3373 Z3_ast r = Z3_mk_seq_suffix(a.ctx(), a, b);
3374 a.check_error();
3375 return expr(a.ctx(), r);
3376 }
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s)
Check if suffix is a suffix of s.

◆ sum()

expr z3::sum ( expr_vector const &  args)
inline

Definition at line 2048 of file z3++.h.

2048 {
2049 assert(args.size() > 0);
2050 context& ctx = args[0].ctx();
2051 array<Z3_ast> _args(args);
2052 Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
2053 ctx.check_error();
2054 return expr(ctx, r);
2055 }

◆ to_check_result()

check_result z3::to_check_result ( Z3_lbool  l)
inline

Definition at line 141 of file z3++.h.

141 {
142 if (l == Z3_L_TRUE) return sat;
143 else if (l == Z3_L_FALSE) return unsat;
144 return unknown;
145 }
@ Z3_L_TRUE
Definition: z3_api.h:103
@ Z3_L_FALSE
Definition: z3_api.h:101

Referenced by solver::check(), optimize::check(), solver::consequences(), and fixedpoint::query().

◆ to_expr()

expr z3::to_expr ( context c,
Z3_ast  a 
)
inline

Wraps a Z3_ast as an expr object. It also checks for errors. This function allows the user to use the whole C API with the C++ layer defined in this file.

Definition at line 1658 of file z3++.h.

1658 {
1659 c.check_error();
1660 assert(Z3_get_ast_kind(c, a) == Z3_APP_AST ||
1662 Z3_get_ast_kind(c, a) == Z3_VAR_AST ||
1664 return expr(c, a);
1665 }
@ Z3_APP_AST
Definition: z3_api.h:180
@ Z3_VAR_AST
Definition: z3_api.h:181
@ Z3_NUMERAL_AST
Definition: z3_api.h:179
@ Z3_QUANTIFIER_AST
Definition: z3_api.h:182
Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a)
Return the kind of the given AST.

Referenced by ashr(), lshr(), sext(), shl(), sle(), slt(), smod(), srem(), udiv(), uge(), ugt(), ule(), ult(), urem(), and zext().

◆ to_func_decl()

func_decl z3::to_func_decl ( context c,
Z3_func_decl  f 
)
inline

Definition at line 1672 of file z3++.h.

1672 {
1673 c.check_error();
1674 return func_decl(c, f);
1675 }
Function declaration (aka function definition). It is the signature of interpreted and uninterpreted ...
Definition: z3++.h:618

Referenced by linear_order(), partial_order(), piecewise_linear_order(), and tree_order().

◆ to_re()

expr z3::to_re ( expr const &  s)
inline

Definition at line 3395 of file z3++.h.

3395 {
3397 }
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq)
Create a regular expression that accepts the sequence seq.

◆ to_real()

expr z3::to_real ( expr const &  a)
inline

Definition at line 3213 of file z3++.h.

3213{ Z3_ast r = Z3_mk_int2real(a.ctx(), a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2real(Z3_context c, Z3_ast t1)
Coerce an integer to a real.

◆ to_sort()

sort z3::to_sort ( context c,
Z3_sort  s 
)
inline

Definition at line 1667 of file z3++.h.

1667 {
1668 c.check_error();
1669 return sort(c, s);
1670 }
A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort.
Definition: z3++.h:516

Referenced by context::enumeration_sort(), context::tuple_sort(), and context::uninterpreted_sort().

◆ tree_order()

func_decl z3::tree_order ( sort const &  a,
unsigned  index 
)
inline

Definition at line 1818 of file z3++.h.

1818 {
1819 return to_func_decl(a.ctx(), Z3_mk_tree_order(a.ctx(), a, index));
1820 }
Z3_func_decl Z3_API Z3_mk_tree_order(Z3_context c, Z3_sort a, unsigned id)
create a tree ordering relation over signature a identified using index id.

◆ try_for()

tactic z3::try_for ( tactic const &  t,
unsigned  ms 
)
inline

Definition at line 2657 of file z3++.h.

2657 {
2658 Z3_tactic r = Z3_tactic_try_for(t.ctx(), t, ms);
2659 t.check_error();
2660 return tactic(t.ctx(), r);
2661 }
Z3_tactic Z3_API Z3_tactic_try_for(Z3_context c, Z3_tactic t, unsigned ms)
Return a tactic that applies t to a given goal for ms milliseconds. If t does not terminate in ms mil...

◆ udiv() [1/3]

expr z3::udiv ( expr const &  a,
expr const &  b 
)
inline

unsigned division operator for bitvectors.

Definition at line 1718 of file z3++.h.

1718{ return to_expr(a.ctx(), Z3_mk_bvudiv(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvudiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned division.

Referenced by udiv().

◆ udiv() [2/3]

expr z3::udiv ( expr const &  a,
int  b 
)
inline

Definition at line 1719 of file z3++.h.

1719{ return udiv(a, a.ctx().num_val(b, a.get_sort())); }
expr udiv(int a, expr const &b)
Definition: z3++.h:1720

◆ udiv() [3/3]

expr z3::udiv ( int  a,
expr const &  b 
)
inline

Definition at line 1720 of file z3++.h.

1720{ return udiv(b.ctx().num_val(a, b.get_sort()), b); }

◆ uge() [1/3]

expr z3::uge ( expr const &  a,
expr const &  b 
)
inline

unsigned greater than or equal to operator for bitvectors.

Definition at line 1706 of file z3++.h.

1706{ return to_expr(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b)); }

Referenced by uge().

◆ uge() [2/3]

expr z3::uge ( expr const &  a,
int  b 
)
inline

Definition at line 1707 of file z3++.h.

1707{ return uge(a, a.ctx().num_val(b, a.get_sort())); }
expr uge(int a, expr const &b)
Definition: z3++.h:1708

◆ uge() [3/3]

expr z3::uge ( int  a,
expr const &  b 
)
inline

Definition at line 1708 of file z3++.h.

1708{ return uge(b.ctx().num_val(a, b.get_sort()), b); }

◆ ugt() [1/3]

expr z3::ugt ( expr const &  a,
expr const &  b 
)
inline

unsigned greater than operator for bitvectors.

Definition at line 1712 of file z3++.h.

1712{ return to_expr(a.ctx(), Z3_mk_bvugt(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvugt(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than.

Referenced by ugt().

◆ ugt() [2/3]

expr z3::ugt ( expr const &  a,
int  b 
)
inline

Definition at line 1713 of file z3++.h.

1713{ return ugt(a, a.ctx().num_val(b, a.get_sort())); }
expr ugt(int a, expr const &b)
Definition: z3++.h:1714

◆ ugt() [3/3]

expr z3::ugt ( int  a,
expr const &  b 
)
inline

Definition at line 1714 of file z3++.h.

1714{ return ugt(b.ctx().num_val(a, b.get_sort()), b); }

◆ ule() [1/3]

expr z3::ule ( expr const &  a,
expr const &  b 
)
inline

unsigned less than or equal to operator for bitvectors.

Definition at line 1694 of file z3++.h.

1694{ return to_expr(a.ctx(), Z3_mk_bvule(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvule(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than or equal to.

Referenced by ule().

◆ ule() [2/3]

expr z3::ule ( expr const &  a,
int  b 
)
inline

Definition at line 1695 of file z3++.h.

1695{ return ule(a, a.ctx().num_val(b, a.get_sort())); }
expr ule(int a, expr const &b)
Definition: z3++.h:1696

◆ ule() [3/3]

expr z3::ule ( int  a,
expr const &  b 
)
inline

Definition at line 1696 of file z3++.h.

1696{ return ule(b.ctx().num_val(a, b.get_sort()), b); }

◆ ult() [1/3]

expr z3::ult ( expr const &  a,
expr const &  b 
)
inline

unsigned less than operator for bitvectors.

Definition at line 1700 of file z3++.h.

1700{ return to_expr(a.ctx(), Z3_mk_bvult(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvult(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned less than.

Referenced by ult().

◆ ult() [2/3]

expr z3::ult ( expr const &  a,
int  b 
)
inline

Definition at line 1701 of file z3++.h.

1701{ return ult(a, a.ctx().num_val(b, a.get_sort())); }
expr ult(int a, expr const &b)
Definition: z3++.h:1702

◆ ult() [3/3]

expr z3::ult ( int  a,
expr const &  b 
)
inline

Definition at line 1702 of file z3++.h.

1702{ return ult(b.ctx().num_val(a, b.get_sort()), b); }

◆ urem() [1/3]

expr z3::urem ( expr const &  a,
expr const &  b 
)
inline

unsigned reminder operator for bitvectors

Definition at line 1739 of file z3++.h.

1739{ return to_expr(a.ctx(), Z3_mk_bvurem(a.ctx(), a, b)); }
Z3_ast Z3_API Z3_mk_bvurem(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned remainder.

Referenced by urem().

◆ urem() [2/3]

expr z3::urem ( expr const &  a,
int  b 
)
inline

Definition at line 1740 of file z3++.h.

1740{ return urem(a, a.ctx().num_val(b, a.get_sort())); }
expr urem(int a, expr const &b)
Definition: z3++.h:1741

◆ urem() [3/3]

expr z3::urem ( int  a,
expr const &  b 
)
inline

Definition at line 1741 of file z3++.h.

1741{ return urem(b.ctx().num_val(a, b.get_sort()), b); }

◆ when()

tactic z3::when ( probe const &  p,
tactic const &  t 
)
inline

Definition at line 2892 of file z3++.h.

2892 {
2893 check_context(p, t);
2894 Z3_tactic r = Z3_tactic_when(t.ctx(), p, t);
2895 t.check_error();
2896 return tactic(t.ctx(), r);
2897 }
Z3_tactic Z3_API Z3_tactic_when(Z3_context c, Z3_probe p, Z3_tactic t)
Return a tactic that applies t to a given goal is the probe p evaluates to true. If p evaluates to fa...

◆ with()

tactic z3::with ( tactic const &  t,
params const &  p 
)
inline

Definition at line 2652 of file z3++.h.

2652 {
2653 Z3_tactic r = Z3_tactic_using_params(t.ctx(), t, p);
2654 t.check_error();
2655 return tactic(t.ctx(), r);
2656 }
Z3_tactic Z3_API Z3_tactic_using_params(Z3_context c, Z3_tactic t, Z3_params p)
Return a tactic that applies t using the given set of parameters.

◆ xnor()

expr z3::xnor ( expr const &  a,
expr const &  b 
)
inline

Definition at line 1575 of file z3++.h.

1575{ check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise xnor.

◆ zext()

expr z3::zext ( expr const &  a,
unsigned  i 
)
inline

Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.

Definition at line 1767 of file z3++.h.

1767{ return to_expr(a.ctx(), Z3_mk_zero_ext(a.ctx(), i, a)); }
Z3_ast Z3_API Z3_mk_zero_ext(Z3_context c, unsigned i, Z3_ast t1)
Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i,...