Z3
Public Member Functions
BitVecRef Class Reference
+ Inheritance diagram for BitVecRef:

Public Member Functions

def sort (self)
 
def size (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __or__ (self, other)
 
def __ror__ (self, other)
 
def __and__ (self, other)
 
def __rand__ (self, other)
 
def __xor__ (self, other)
 
def __rxor__ (self, other)
 
def __pos__ (self)
 
def __neg__ (self)
 
def __invert__ (self)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
def __rshift__ (self, other)
 
def __lshift__ (self, other)
 
def __rrshift__ (self, other)
 
def __rlshift__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Bit-vector expressions.

Definition at line 3232 of file z3py.py.

Member Function Documentation

◆ __add__()

def __add__ (   self,
  other 
)
Create the Z3 expression `self + other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x + y
x + y
>>> (x + y).sort()
BitVec(32)

Definition at line 3257 of file z3py.py.

3257 def __add__(self, other):
3258 """Create the Z3 expression `self + other`.
3259
3260 >>> x = BitVec('x', 32)
3261 >>> y = BitVec('y', 32)
3262 >>> x + y
3263 x + y
3264 >>> (x + y).sort()
3265 BitVec(32)
3266 """
3267 a, b = _coerce_exprs(self, other)
3268 return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3269
def BitVec(name, bv, ctx=None)
Definition: z3py.py:3770
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.

◆ __and__()

def __and__ (   self,
  other 
)
Create the Z3 expression bitwise-and `self & other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x & y
x & y
>>> (x & y).sort()
BitVec(32)

Definition at line 3349 of file z3py.py.

3349 def __and__(self, other):
3350 """Create the Z3 expression bitwise-and `self & other`.
3351
3352 >>> x = BitVec('x', 32)
3353 >>> y = BitVec('y', 32)
3354 >>> x & y
3355 x & y
3356 >>> (x & y).sort()
3357 BitVec(32)
3358 """
3359 a, b = _coerce_exprs(self, other)
3360 return BitVecRef(Z3_mk_bvand(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3361
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ __div__()

def __div__ (   self,
  other 
)
Create the Z3 expression (signed) division `self / other`.

Use the function UDiv() for unsigned division.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x / y
x/y
>>> (x / y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'

Definition at line 3426 of file z3py.py.

3426 def __div__(self, other):
3427 """Create the Z3 expression (signed) division `self / other`.
3428
3429 Use the function UDiv() for unsigned division.
3430
3431 >>> x = BitVec('x', 32)
3432 >>> y = BitVec('y', 32)
3433 >>> x / y
3434 x/y
3435 >>> (x / y).sort()
3436 BitVec(32)
3437 >>> (x / y).sexpr()
3438 '(bvsdiv x y)'
3439 >>> UDiv(x, y).sexpr()
3440 '(bvudiv x y)'
3441 """
3442 a, b = _coerce_exprs(self, other)
3443 return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3444
def UDiv(a, b)
Definition: z3py.py:3953
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.

Referenced by ArithRef.__truediv__(), BitVecRef.__truediv__(), and FPRef.__truediv__().

◆ __ge__()

def __ge__ (   self,
  other 
)
Create the Z3 expression (signed) `other >= self`.

Use the function UGE() for unsigned greater than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> x >= y
x >= y
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'

Definition at line 3556 of file z3py.py.

3556 def __ge__(self, other):
3557 """Create the Z3 expression (signed) `other >= self`.
3558
3559 Use the function UGE() for unsigned greater than or equal to.
3560
3561 >>> x, y = BitVecs('x y', 32)
3562 >>> x >= y
3563 x >= y
3564 >>> (x >= y).sexpr()
3565 '(bvsge x y)'
3566 >>> UGE(x, y).sexpr()
3567 '(bvuge x y)'
3568 """
3569 a, b = _coerce_exprs(self, other)
3570 return BoolRef(Z3_mk_bvsge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3571
def BitVecs(names, bv, ctx=None)
Definition: z3py.py:3793
def UGE(a, b)
Definition: z3py.py:3919
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.

◆ __gt__()

def __gt__ (   self,
  other 
)
Create the Z3 expression (signed) `other > self`.

Use the function UGT() for unsigned greater than.

>>> x, y = BitVecs('x y', 32)
>>> x > y
x > y
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'

Definition at line 3540 of file z3py.py.

3540 def __gt__(self, other):
3541 """Create the Z3 expression (signed) `other > self`.
3542
3543 Use the function UGT() for unsigned greater than.
3544
3545 >>> x, y = BitVecs('x y', 32)
3546 >>> x > y
3547 x > y
3548 >>> (x > y).sexpr()
3549 '(bvsgt x y)'
3550 >>> UGT(x, y).sexpr()
3551 '(bvugt x y)'
3552 """
3553 a, b = _coerce_exprs(self, other)
3554 return BoolRef(Z3_mk_bvsgt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3555
def UGT(a, b)
Definition: z3py.py:3936
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.

◆ __invert__()

def __invert__ (   self)
Create the Z3 expression bitwise-not `~self`.

>>> x = BitVec('x', 32)
>>> ~x
~x
>>> simplify(~(~x))
x

Definition at line 3415 of file z3py.py.

3415 def __invert__(self):
3416 """Create the Z3 expression bitwise-not `~self`.
3417
3418 >>> x = BitVec('x', 32)
3419 >>> ~x
3420 ~x
3421 >>> simplify(~(~x))
3422 x
3423 """
3424 return BitVecRef(Z3_mk_bvnot(self.ctx_ref(), self.as_ast()), self.ctx)
3425
def simplify(a, *arguments, **keywords)
Utils.
Definition: z3py.py:8182
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ __le__()

def __le__ (   self,
  other 
)
Create the Z3 expression (signed) `other <= self`.

Use the function ULE() for unsigned less than or equal to.

>>> x, y = BitVecs('x y', 32)
>>> x <= y
x <= y
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'

Definition at line 3508 of file z3py.py.

3508 def __le__(self, other):
3509 """Create the Z3 expression (signed) `other <= self`.
3510
3511 Use the function ULE() for unsigned less than or equal to.
3512
3513 >>> x, y = BitVecs('x y', 32)
3514 >>> x <= y
3515 x <= y
3516 >>> (x <= y).sexpr()
3517 '(bvsle x y)'
3518 >>> ULE(x, y).sexpr()
3519 '(bvule x y)'
3520 """
3521 a, b = _coerce_exprs(self, other)
3522 return BoolRef(Z3_mk_bvsle(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3523
def ULE(a, b)
Definition: z3py.py:3885
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.

◆ __lshift__()

def __lshift__ (   self,
  other 
)
Create the Z3 expression left shift `self << other`

>>> x, y = BitVecs('x y', 32)
>>> x << y
x << y
>>> (x << y).sexpr()
'(bvshl x y)'
>>> simplify(BitVecVal(2, 3) << 1)
4

Definition at line 3602 of file z3py.py.

3602 def __lshift__(self, other):
3603 """Create the Z3 expression left shift `self << other`
3604
3605 >>> x, y = BitVecs('x y', 32)
3606 >>> x << y
3607 x << y
3608 >>> (x << y).sexpr()
3609 '(bvshl x y)'
3610 >>> simplify(BitVecVal(2, 3) << 1)
3611 4
3612 """
3613 a, b = _coerce_exprs(self, other)
3614 return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3615
def BitVecVal(val, bv, ctx=None)
Definition: z3py.py:3754
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.

◆ __lt__()

def __lt__ (   self,
  other 
)
Create the Z3 expression (signed) `other < self`.

Use the function ULT() for unsigned less than.

>>> x, y = BitVecs('x y', 32)
>>> x < y
x < y
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'

Definition at line 3524 of file z3py.py.

3524 def __lt__(self, other):
3525 """Create the Z3 expression (signed) `other < self`.
3526
3527 Use the function ULT() for unsigned less than.
3528
3529 >>> x, y = BitVecs('x y', 32)
3530 >>> x < y
3531 x < y
3532 >>> (x < y).sexpr()
3533 '(bvslt x y)'
3534 >>> ULT(x, y).sexpr()
3535 '(bvult x y)'
3536 """
3537 a, b = _coerce_exprs(self, other)
3538 return BoolRef(Z3_mk_bvslt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3539
def ULT(a, b)
Definition: z3py.py:3902
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.

◆ __mod__()

def __mod__ (   self,
  other 
)
Create the Z3 expression (signed) mod `self % other`.

Use the function URem() for unsigned remainder, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x % y
x%y
>>> (x % y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'

Definition at line 3469 of file z3py.py.

3469 def __mod__(self, other):
3470 """Create the Z3 expression (signed) mod `self % other`.
3471
3472 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3473
3474 >>> x = BitVec('x', 32)
3475 >>> y = BitVec('y', 32)
3476 >>> x % y
3477 x%y
3478 >>> (x % y).sort()
3479 BitVec(32)
3480 >>> (x % y).sexpr()
3481 '(bvsmod x y)'
3482 >>> URem(x, y).sexpr()
3483 '(bvurem x y)'
3484 >>> SRem(x, y).sexpr()
3485 '(bvsrem x y)'
3486 """
3487 a, b = _coerce_exprs(self, other)
3488 return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3489
def SRem(a, b)
Definition: z3py.py:3993
def URem(a, b)
Definition: z3py.py:3973
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

◆ __mul__()

def __mul__ (   self,
  other 
)
Create the Z3 expression `self * other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x * y
x*y
>>> (x * y).sort()
BitVec(32)

Definition at line 3280 of file z3py.py.

3280 def __mul__(self, other):
3281 """Create the Z3 expression `self * other`.
3282
3283 >>> x = BitVec('x', 32)
3284 >>> y = BitVec('y', 32)
3285 >>> x * y
3286 x*y
3287 >>> (x * y).sort()
3288 BitVec(32)
3289 """
3290 a, b = _coerce_exprs(self, other)
3291 return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3292
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.

◆ __neg__()

def __neg__ (   self)
Return an expression representing `-self`.

>>> x = BitVec('x', 32)
>>> -x
-x
>>> simplify(-(-x))
x

Definition at line 3404 of file z3py.py.

3404 def __neg__(self):
3405 """Return an expression representing `-self`.
3406
3407 >>> x = BitVec('x', 32)
3408 >>> -x
3409 -x
3410 >>> simplify(-(-x))
3411 x
3412 """
3413 return BitVecRef(Z3_mk_bvneg(self.ctx_ref(), self.as_ast()), self.ctx)
3414
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.

◆ __or__()

def __or__ (   self,
  other 
)
Create the Z3 expression bitwise-or `self | other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x | y
x | y
>>> (x | y).sort()
BitVec(32)

Definition at line 3326 of file z3py.py.

3326 def __or__(self, other):
3327 """Create the Z3 expression bitwise-or `self | other`.
3328
3329 >>> x = BitVec('x', 32)
3330 >>> y = BitVec('y', 32)
3331 >>> x | y
3332 x | y
3333 >>> (x | y).sort()
3334 BitVec(32)
3335 """
3336 a, b = _coerce_exprs(self, other)
3337 return BitVecRef(Z3_mk_bvor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3338
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ __pos__()

def __pos__ (   self)
Return `self`.

>>> x = BitVec('x', 32)
>>> +x
x

Definition at line 3395 of file z3py.py.

3395 def __pos__(self):
3396 """Return `self`.
3397
3398 >>> x = BitVec('x', 32)
3399 >>> +x
3400 x
3401 """
3402 return self
3403

◆ __radd__()

def __radd__ (   self,
  other 
)
Create the Z3 expression `other + self`.

>>> x = BitVec('x', 32)
>>> 10 + x
10 + x

Definition at line 3270 of file z3py.py.

3270 def __radd__(self, other):
3271 """Create the Z3 expression `other + self`.
3272
3273 >>> x = BitVec('x', 32)
3274 >>> 10 + x
3275 10 + x
3276 """
3277 a, b = _coerce_exprs(self, other)
3278 return BitVecRef(Z3_mk_bvadd(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3279

◆ __rand__()

def __rand__ (   self,
  other 
)
Create the Z3 expression bitwise-or `other & self`.

>>> x = BitVec('x', 32)
>>> 10 & x
10 & x

Definition at line 3362 of file z3py.py.

3362 def __rand__(self, other):
3363 """Create the Z3 expression bitwise-or `other & self`.
3364
3365 >>> x = BitVec('x', 32)
3366 >>> 10 & x
3367 10 & x
3368 """
3369 a, b = _coerce_exprs(self, other)
3370 return BitVecRef(Z3_mk_bvand(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3371

◆ __rdiv__()

def __rdiv__ (   self,
  other 
)
Create the Z3 expression (signed) division `other / self`.

Use the function UDiv() for unsigned division.

>>> x = BitVec('x', 32)
>>> 10 / x
10/x
>>> (10 / x).sexpr()
'(bvsdiv #x0000000a x)'
>>> UDiv(10, x).sexpr()
'(bvudiv #x0000000a x)'

Definition at line 3449 of file z3py.py.

3449 def __rdiv__(self, other):
3450 """Create the Z3 expression (signed) division `other / self`.
3451
3452 Use the function UDiv() for unsigned division.
3453
3454 >>> x = BitVec('x', 32)
3455 >>> 10 / x
3456 10/x
3457 >>> (10 / x).sexpr()
3458 '(bvsdiv #x0000000a x)'
3459 >>> UDiv(10, x).sexpr()
3460 '(bvudiv #x0000000a x)'
3461 """
3462 a, b = _coerce_exprs(self, other)
3463 return BitVecRef(Z3_mk_bvsdiv(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3464

Referenced by ArithRef.__rtruediv__(), BitVecRef.__rtruediv__(), and FPRef.__rtruediv__().

◆ __rlshift__()

def __rlshift__ (   self,
  other 
)
Create the Z3 expression left shift `other << self`.

Use the function LShR() for the right logical shift

>>> x = BitVec('x', 32)
>>> 10 << x
10 << x
>>> (10 << x).sexpr()
'(bvshl #x0000000a x)'

Definition at line 3630 of file z3py.py.

3630 def __rlshift__(self, other):
3631 """Create the Z3 expression left shift `other << self`.
3632
3633 Use the function LShR() for the right logical shift
3634
3635 >>> x = BitVec('x', 32)
3636 >>> 10 << x
3637 10 << x
3638 >>> (10 << x).sexpr()
3639 '(bvshl #x0000000a x)'
3640 """
3641 a, b = _coerce_exprs(self, other)
3642 return BitVecRef(Z3_mk_bvshl(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3643
def LShR(a, b)
Definition: z3py.py:4013

◆ __rmod__()

def __rmod__ (   self,
  other 
)
Create the Z3 expression (signed) mod `other % self`.

Use the function URem() for unsigned remainder, and SRem() for signed remainder.

>>> x = BitVec('x', 32)
>>> 10 % x
10%x
>>> (10 % x).sexpr()
'(bvsmod #x0000000a x)'
>>> URem(10, x).sexpr()
'(bvurem #x0000000a x)'
>>> SRem(10, x).sexpr()
'(bvsrem #x0000000a x)'

Definition at line 3490 of file z3py.py.

3490 def __rmod__(self, other):
3491 """Create the Z3 expression (signed) mod `other % self`.
3492
3493 Use the function URem() for unsigned remainder, and SRem() for signed remainder.
3494
3495 >>> x = BitVec('x', 32)
3496 >>> 10 % x
3497 10%x
3498 >>> (10 % x).sexpr()
3499 '(bvsmod #x0000000a x)'
3500 >>> URem(10, x).sexpr()
3501 '(bvurem #x0000000a x)'
3502 >>> SRem(10, x).sexpr()
3503 '(bvsrem #x0000000a x)'
3504 """
3505 a, b = _coerce_exprs(self, other)
3506 return BitVecRef(Z3_mk_bvsmod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3507

◆ __rmul__()

def __rmul__ (   self,
  other 
)
Create the Z3 expression `other * self`.

>>> x = BitVec('x', 32)
>>> 10 * x
10*x

Definition at line 3293 of file z3py.py.

3293 def __rmul__(self, other):
3294 """Create the Z3 expression `other * self`.
3295
3296 >>> x = BitVec('x', 32)
3297 >>> 10 * x
3298 10*x
3299 """
3300 a, b = _coerce_exprs(self, other)
3301 return BitVecRef(Z3_mk_bvmul(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3302

◆ __ror__()

def __ror__ (   self,
  other 
)
Create the Z3 expression bitwise-or `other | self`.

>>> x = BitVec('x', 32)
>>> 10 | x
10 | x

Definition at line 3339 of file z3py.py.

3339 def __ror__(self, other):
3340 """Create the Z3 expression bitwise-or `other | self`.
3341
3342 >>> x = BitVec('x', 32)
3343 >>> 10 | x
3344 10 | x
3345 """
3346 a, b = _coerce_exprs(self, other)
3347 return BitVecRef(Z3_mk_bvor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3348

◆ __rrshift__()

def __rrshift__ (   self,
  other 
)
Create the Z3 expression (arithmetical) right shift `other` >> `self`.

Use the function LShR() for the right logical shift

>>> x = BitVec('x', 32)
>>> 10 >> x
10 >> x
>>> (10 >> x).sexpr()
'(bvashr #x0000000a x)'

Definition at line 3616 of file z3py.py.

3616 def __rrshift__(self, other):
3617 """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
3618
3619 Use the function LShR() for the right logical shift
3620
3621 >>> x = BitVec('x', 32)
3622 >>> 10 >> x
3623 10 >> x
3624 >>> (10 >> x).sexpr()
3625 '(bvashr #x0000000a x)'
3626 """
3627 a, b = _coerce_exprs(self, other)
3628 return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3629
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.

◆ __rshift__()

def __rshift__ (   self,
  other 
)
Create the Z3 expression (arithmetical) right shift `self >> other`

Use the function LShR() for the right logical shift

>>> x, y = BitVecs('x y', 32)
>>> x >> y
x >> y
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1

Definition at line 3572 of file z3py.py.

3572 def __rshift__(self, other):
3573 """Create the Z3 expression (arithmetical) right shift `self >> other`
3574
3575 Use the function LShR() for the right logical shift
3576
3577 >>> x, y = BitVecs('x y', 32)
3578 >>> x >> y
3579 x >> y
3580 >>> (x >> y).sexpr()
3581 '(bvashr x y)'
3582 >>> LShR(x, y).sexpr()
3583 '(bvlshr x y)'
3584 >>> BitVecVal(4, 3)
3585 4
3586 >>> BitVecVal(4, 3).as_signed_long()
3587 -4
3588 >>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
3589 -2
3590 >>> simplify(BitVecVal(4, 3) >> 1)
3591 6
3592 >>> simplify(LShR(BitVecVal(4, 3), 1))
3593 2
3594 >>> simplify(BitVecVal(2, 3) >> 1)
3595 1
3596 >>> simplify(LShR(BitVecVal(2, 3), 1))
3597 1
3598 """
3599 a, b = _coerce_exprs(self, other)
3600 return BitVecRef(Z3_mk_bvashr(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3601

◆ __rsub__()

def __rsub__ (   self,
  other 
)
Create the Z3 expression `other - self`.

>>> x = BitVec('x', 32)
>>> 10 - x
10 - x

Definition at line 3316 of file z3py.py.

3316 def __rsub__(self, other):
3317 """Create the Z3 expression `other - self`.
3318
3319 >>> x = BitVec('x', 32)
3320 >>> 10 - x
3321 10 - x
3322 """
3323 a, b = _coerce_exprs(self, other)
3324 return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3325
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.

◆ __rtruediv__()

def __rtruediv__ (   self,
  other 
)
Create the Z3 expression (signed) division `other / self`.

Definition at line 3465 of file z3py.py.

3465 def __rtruediv__(self, other):
3466 """Create the Z3 expression (signed) division `other / self`."""
3467 return self.__rdiv__(other)
3468

◆ __rxor__()

def __rxor__ (   self,
  other 
)
Create the Z3 expression bitwise-xor `other ^ self`.

>>> x = BitVec('x', 32)
>>> 10 ^ x
10 ^ x

Definition at line 3385 of file z3py.py.

3385 def __rxor__(self, other):
3386 """Create the Z3 expression bitwise-xor `other ^ self`.
3387
3388 >>> x = BitVec('x', 32)
3389 >>> 10 ^ x
3390 10 ^ x
3391 """
3392 a, b = _coerce_exprs(self, other)
3393 return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3394
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.

◆ __sub__()

def __sub__ (   self,
  other 
)
Create the Z3 expression `self - other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x - y
x - y
>>> (x - y).sort()
BitVec(32)

Definition at line 3303 of file z3py.py.

3303 def __sub__(self, other):
3304 """Create the Z3 expression `self - other`.
3305
3306 >>> x = BitVec('x', 32)
3307 >>> y = BitVec('y', 32)
3308 >>> x - y
3309 x - y
3310 >>> (x - y).sort()
3311 BitVec(32)
3312 """
3313 a, b = _coerce_exprs(self, other)
3314 return BitVecRef(Z3_mk_bvsub(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3315

◆ __truediv__()

def __truediv__ (   self,
  other 
)
Create the Z3 expression (signed) division `self / other`.

Definition at line 3445 of file z3py.py.

3445 def __truediv__(self, other):
3446 """Create the Z3 expression (signed) division `self / other`."""
3447 return self.__div__(other)
3448

◆ __xor__()

def __xor__ (   self,
  other 
)
Create the Z3 expression bitwise-xor `self ^ other`.

>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x ^ y
x ^ y
>>> (x ^ y).sort()
BitVec(32)

Definition at line 3372 of file z3py.py.

3372 def __xor__(self, other):
3373 """Create the Z3 expression bitwise-xor `self ^ other`.
3374
3375 >>> x = BitVec('x', 32)
3376 >>> y = BitVec('y', 32)
3377 >>> x ^ y
3378 x ^ y
3379 >>> (x ^ y).sort()
3380 BitVec(32)
3381 """
3382 a, b = _coerce_exprs(self, other)
3383 return BitVecRef(Z3_mk_bvxor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3384

◆ size()

def size (   self)
Return the number of bits of the bit-vector expression `self`.

>>> x = BitVec('x', 32)
>>> (x + 1).size()
32
>>> Concat(x, x).size()
64

Definition at line 3246 of file z3py.py.

3246 def size(self):
3247 """Return the number of bits of the bit-vector expression `self`.
3248
3249 >>> x = BitVec('x', 32)
3250 >>> (x + 1).size()
3251 32
3252 >>> Concat(x, x).size()
3253 64
3254 """
3255 return self.sort().size()
3256
def Concat(*args)
Definition: z3py.py:3813

Referenced by ParamDescrsRef.__len__(), Goal.__len__(), BitVecNumRef.as_signed_long(), BitVecRef.size(), and BitVecSortRef.subsort().

◆ sort()

def sort (   self)
Return the sort of the bit-vector expression `self`.

>>> x = BitVec('x', 32)
>>> x.sort()
BitVec(32)
>>> x.sort() == BitVecSort(32)
True

Reimplemented from ExprRef.

Definition at line 3235 of file z3py.py.

3235 def sort(self):
3236 """Return the sort of the bit-vector expression `self`.
3237
3238 >>> x = BitVec('x', 32)
3239 >>> x.sort()
3240 BitVec(32)
3241 >>> x.sort() == BitVecSort(32)
3242 True
3243 """
3244 return BitVecSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
3245
def BitVecSort(sz, ctx=None)
Definition: z3py.py:3740
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by BitVecRef.__add__(), BitVecRef.__and__(), BitVecRef.__div__(), QuantifierRef.__getitem__(), BitVecRef.__mod__(), BitVecRef.__mul__(), BitVecRef.__or__(), BitVecRef.__sub__(), BitVecRef.__xor__(), FPNumRef.as_string(), ArrayRef.domain(), FPRef.ebits(), ArithRef.is_int(), ArithRef.is_real(), ArrayRef.range(), FPRef.sbits(), BitVecRef.size(), and ExprRef.sort_kind().