Z3
Public Member Functions
RatNumRef Class Reference
+ Inheritance diagram for RatNumRef:

Public Member Functions

def numerator (self)
 
def denominator (self)
 
def numerator_as_long (self)
 
def denominator_as_long (self)
 
def is_int (self)
 
def is_real (self)
 
def is_int_value (self)
 
def as_long (self)
 
def as_decimal (self, prec)
 
def as_string (self)
 
def as_fraction (self)
 
- Public Member Functions inherited from ArithRef
def sort (self)
 
def is_int (self)
 
def is_real (self)
 
def __add__ (self, other)
 
def __radd__ (self, other)
 
def __mul__ (self, other)
 
def __rmul__ (self, other)
 
def __sub__ (self, other)
 
def __rsub__ (self, other)
 
def __pow__ (self, other)
 
def __rpow__ (self, other)
 
def __div__ (self, other)
 
def __truediv__ (self, other)
 
def __rdiv__ (self, other)
 
def __rtruediv__ (self, other)
 
def __mod__ (self, other)
 
def __rmod__ (self, other)
 
def __neg__ (self)
 
def __pos__ (self)
 
def __le__ (self, other)
 
def __lt__ (self, other)
 
def __gt__ (self, other)
 
def __ge__ (self, other)
 
- Public Member Functions inherited from ExprRef
def as_ast (self)
 
def get_id (self)
 
def sort (self)
 
def sort_kind (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __ne__ (self, other)
 
def params (self)
 
def decl (self)
 
def num_args (self)
 
def arg (self, idx)
 
def children (self)
 
- Public Member Functions inherited from AstRef
def __init__ (self, ast, ctx=None)
 
def __del__ (self)
 
def __deepcopy__ (self, memo={})
 
def __str__ (self)
 
def __repr__ (self)
 
def __eq__ (self, other)
 
def __hash__ (self)
 
def __nonzero__ (self)
 
def __bool__ (self)
 
def sexpr (self)
 
def as_ast (self)
 
def get_id (self)
 
def ctx_ref (self)
 
def eq (self, other)
 
def translate (self, target)
 
def __copy__ (self)
 
def hash (self)
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Rational values.

Definition at line 2774 of file z3py.py.

Member Function Documentation

◆ as_decimal()

def as_decimal (   self,
  prec 
)
 Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.

>>> v = RealVal("1/5")
>>> v.as_decimal(3)
'0.2'
>>> v = RealVal("1/3")
>>> v.as_decimal(3)
'0.333?'

Definition at line 2840 of file z3py.py.

2840 def as_decimal(self, prec):
2841 """ Return a Z3 rational value as a string in decimal notation using at most `prec` decimal places.
2842
2843 >>> v = RealVal("1/5")
2844 >>> v.as_decimal(3)
2845 '0.2'
2846 >>> v = RealVal("1/3")
2847 >>> v.as_decimal(3)
2848 '0.333?'
2849 """
2850 return Z3_get_numeral_decimal_string(self.ctx_ref(), self.as_ast(), prec)
2851
def RealVal(val, ctx=None)
Definition: z3py.py:2965
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ as_fraction()

def as_fraction (   self)
Return a Z3 rational as a Python Fraction object.

>>> v = RealVal("1/5")
>>> v.as_fraction()
Fraction(1, 5)

Definition at line 2861 of file z3py.py.

2861 def as_fraction(self):
2862 """Return a Z3 rational as a Python Fraction object.
2863
2864 >>> v = RealVal("1/5")
2865 >>> v.as_fraction()
2866 Fraction(1, 5)
2867 """
2868 return Fraction(self.numerator_as_long(), self.denominator_as_long())
2869

◆ as_long()

def as_long (   self)

Definition at line 2836 of file z3py.py.

2836 def as_long(self):
2837 _z3_assert(self.is_int_value(), "Expected integer fraction")
2838 return self.numerator_as_long()
2839

Referenced by BitVecNumRef.as_signed_long(), RatNumRef.denominator_as_long(), and RatNumRef.numerator_as_long().

◆ as_string()

def as_string (   self)
Return a Z3 rational numeral as a Python string.

>>> v = Q(3,6)
>>> v.as_string()
'1/2'

Definition at line 2852 of file z3py.py.

2852 def as_string(self):
2853 """Return a Z3 rational numeral as a Python string.
2854
2855 >>> v = Q(3,6)
2856 >>> v.as_string()
2857 '1/2'
2858 """
2859 return Z3_get_numeral_string(self.ctx_ref(), self.as_ast())
2860
def Q(a, b, ctx=None)
Definition: z3py.py:2998
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a string of a numeric constant term.

Referenced by IntNumRef.as_long(), BitVecNumRef.as_long(), and FiniteDomainNumRef.as_long().

◆ denominator()

def denominator (   self)
 Return the denominator of a Z3 rational numeral.

>>> is_rational_value(Q(3,5))
True
>>> n = Q(3,5)
>>> n.denominator()
5

Definition at line 2792 of file z3py.py.

2792 def denominator(self):
2793 """ Return the denominator of a Z3 rational numeral.
2794
2795 >>> is_rational_value(Q(3,5))
2796 True
2797 >>> n = Q(3,5)
2798 >>> n.denominator()
2799 5
2800 """
2801 return IntNumRef(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
2802
def is_rational_value(a)
Definition: z3py.py:2562
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.denominator_as_long(), and RatNumRef.is_int_value().

◆ denominator_as_long()

def denominator_as_long (   self)
 Return the denominator as a Python long.

>>> v = RealVal("1/3")
>>> v
1/3
>>> v.denominator_as_long()
3

Definition at line 2816 of file z3py.py.

2816 def denominator_as_long(self):
2817 """ Return the denominator as a Python long.
2818
2819 >>> v = RealVal("1/3")
2820 >>> v
2821 1/3
2822 >>> v.denominator_as_long()
2823 3
2824 """
2825 return self.denominator().as_long()
2826

Referenced by RatNumRef.as_fraction(), and RatNumRef.is_int_value().

◆ is_int()

def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Reimplemented from ArithRef.

Definition at line 2827 of file z3py.py.

2827 def is_int(self):
2828 return False
2829
def is_int(a)
Definition: z3py.py:2497

Referenced by IntNumRef.as_long(), RatNumRef.is_int_value(), and ArithSortRef.subsort().

◆ is_int_value()

def is_int_value (   self)

Definition at line 2833 of file z3py.py.

2833 def is_int_value(self):
2834 return self.denominator().is_int() and self.denominator_as_long() == 1
2835
def is_int_value(a)
Definition: z3py.py:2539

Referenced by RatNumRef.as_long().

◆ is_real()

def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Reimplemented from ArithRef.

Definition at line 2830 of file z3py.py.

2830 def is_real(self):
2831 return True
2832
def is_real(a)
Definition: z3py.py:2515

◆ numerator()

def numerator (   self)
 Return the numerator of a Z3 rational numeral.

>>> is_rational_value(RealVal("3/5"))
True
>>> n = RealVal("3/5")
>>> n.numerator()
3
>>> is_rational_value(Q(3,5))
True
>>> Q(3,5).numerator()
3

Definition at line 2777 of file z3py.py.

2777 def numerator(self):
2778 """ Return the numerator of a Z3 rational numeral.
2779
2780 >>> is_rational_value(RealVal("3/5"))
2781 True
2782 >>> n = RealVal("3/5")
2783 >>> n.numerator()
2784 3
2785 >>> is_rational_value(Q(3,5))
2786 True
2787 >>> Q(3,5).numerator()
2788 3
2789 """
2790 return IntNumRef(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
2791
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef.numerator(), and RatNumRef.numerator_as_long().

◆ numerator_as_long()

def numerator_as_long (   self)
 Return the numerator as a Python long.

>>> v = RealVal(10000000000)
>>> v
10000000000
>>> v + 1
10000000000 + 1
>>> v.numerator_as_long() + 1 == 10000000001
True

Definition at line 2803 of file z3py.py.

2803 def numerator_as_long(self):
2804 """ Return the numerator as a Python long.
2805
2806 >>> v = RealVal(10000000000)
2807 >>> v
2808 10000000000
2809 >>> v + 1
2810 10000000000 + 1
2811 >>> v.numerator_as_long() + 1 == 10000000001
2812 True
2813 """
2814 return self.numerator().as_long()
2815

Referenced by RatNumRef.as_fraction(), and RatNumRef.as_long().